There is no wait-free algorithm that solves k-set agreement among n ≥ k+1 processes in asynchronous systems where processes communicate using only registers. However, proofs of this result for k ≥ 2 are complicated and involve topological reasoning. To explain why such sophisticated arguments are necessary, Alistarh, Aspnes, Ellen, Gelashvili, and Zhu recently introduced extension-based proofs, which generalize valency arguments, and proved that there are no extension-based proofs of this result. In the synchronous message passing model, k-set agreement is solvable, but there is a lower bound of t rounds for any k-set agreement algorithm among n > kt processes when at most k processes can crash each round. The proof of this result for k ≥ 2 is also a complicated topological argument. We define a notion of extension-based proofs for this model and we show there are no extension-based proofs that t rounds are necessary for any k-set agreement algorithm among n = kt+1 processes, for k ≥ 2 and t > 2, when at most k processes can crash each round. In particular, our result shows that no valency argument can prove this lower bound.
@InProceedings{sheng_et_al:LIPIcs.DISC.2021.36, author = {Sheng, Yilun and Ellen, Faith}, title = {{Extension-Based Proofs for Synchronous Message Passing}}, booktitle = {35th International Symposium on Distributed Computing (DISC 2021)}, pages = {36:1--36:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-210-5}, ISSN = {1868-8969}, year = {2021}, volume = {209}, editor = {Gilbert, Seth}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2021.36}, URN = {urn:nbn:de:0030-drops-148380}, doi = {10.4230/LIPIcs.DISC.2021.36}, annote = {Keywords: Set agreement, lower bounds, valency arguments} }
Feedback for Dagstuhl Publishing