We investigate the step complexity of the Leader Election problem (and implementing the corresponding test-and-set object) in asynchronous shared memory, where processes communicate through registers supporting atomic read and write and must coordinate so that a single process becomes the leader. Determining tight step complexity bounds for solving this problem is one of the key open problems in the theory of shared memory distributed computing. The best known algorithm is a randomized tournament-tree, which has worst-case expected step complexity O(log N) for N processes. There are provably no deterministic wait-free algorithms, and only restricted lower bounds are known for obstruction-free and randomized wait-free algorithms. We introduce a new lower bound that establishes an Ω((log N)/(log log N + log Q)) step complexity for any obstruction-free Leader Election algorithm, where N is the number of processes, and 2 ≤ Q ≤ N is a bound on the value contention, which we define as the maximum number of different values that processes can be simultaneously poised to write to the same register in any execution of the algorithm. Our result is strictly stronger than previous bounds based on write contention. In particular, it implies new lower bounds on step complexity that depend on register size.
@InProceedings{alistarh_et_al:LIPIcs.DISC.2025.3, author = {Alistarh, Dan and Ellen, Faith and Fedorov, Alexander}, title = {{An Almost-Logarithmic Lower Bound for Leader Election with Bounded Value Contention}}, booktitle = {39th International Symposium on Distributed Computing (DISC 2025)}, pages = {3:1--3:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-402-4}, ISSN = {1868-8969}, year = {2025}, volume = {356}, editor = {Kowalski, Dariusz R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.3}, URN = {urn:nbn:de:0030-drops-248204}, doi = {10.4230/LIPIcs.DISC.2025.3}, annote = {Keywords: Leader Election, Test-and-Set, Shared Memory, Lower Bounds} }