Broadcast is a fundamental primitive that plays an important role in secure Multi-Party Computation (MPC) area. In this work, we revisit the broadcast with selective abort (hereafter, short for broadcast) proposed by Goldwasser and Lindell (DISC 2002; JoC 2005) and study the round complexity of broadcast under different setup assumptions. Our findings are summarized as follows: - We formally prove that 1-round broadcast is impossible under various widely-used setup assumptions (e.g., plain model, random oracle model, and common reference string model, etc.), even if we consider the static security and the stand-alone framework. More concretely, we formalize a notion called consistent oracle to capture these setups, and prove that our impossibility holds under the consistent oracle. Our impossibility holds in both honest majority setting and dishonest majority setting. - We show that 1-round broadcast protocol is possible in the Universal Composition (UC) framework, by assuming stateful trusted hardwares. Our protocol can be proven secure against all-but-one adaptive and malicious corruptions. We bypass our impossibility result since our stateful trusted hardwares do not satisfy the definition of consistent oracle. - We provide an application of 1-round broadcast: we construct the first 1-round multiple-verifier zero-knowledge (which is a special case of MPC) protocol, without assuming the broadcast hybrid world.
@InProceedings{zhou_et_al:LIPIcs.DISC.2025.66, author = {Zhou, Zhelei and Zhang, Bingsheng and Zhou, Hong-Sheng and Ren, Kui}, title = {{Brief Announcement: Single-Round Broadcast: Impossibility, Feasibility, and More}}, booktitle = {39th International Symposium on Distributed Computing (DISC 2025)}, pages = {66:1--66:7}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-402-4}, ISSN = {1868-8969}, year = {2025}, volume = {356}, editor = {Kowalski, Dariusz R.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2025.66}, URN = {urn:nbn:de:0030-drops-248838}, doi = {10.4230/LIPIcs.DISC.2025.66}, annote = {Keywords: Broadcast, Security with abort, Round optimality} }