A fundamental problem in crystallisation, and in molecular tile-based self-assembly in particular, is how to simultaneously control its two main constituent processes: seeded growth and spontaneous nucleation. Often, we desire out-of-equilibrium growth without spontaneous nucleation, which can be achieved through careful calibration of temperature, concentration and experimental time-scale a laborious and overly-sensitive approach. Another technique is to find alternative nucleation-resistant tile designs [Minev et al, 2001]. Rogers, Evans and Woods [In prep] propose blockers: short DNA strands designed to dynamically block DNA tile sides, altering self-assembly dynamics. Experiments showed independent and tunable control on nucleation and growth rates. Here, we provide a theoretical explanation for these surprising results. We formally define the kBlock model where blockers bind to tiles at thermodynamic equilibrium in solution and stochastic kinetics allow self-assembly of a tiled structure. In an intentionally simplified mathematical setting we show that blockers permit reasonable seeded growth rates, akin to a non-blocked tile system at lower tile concentration, crucially giving nucleation rates that are exponentially suppressed. We then implement the kBlock model in a stochastic simulator, with results showing remarkable alignment with oversimplified theory. We provide evidence of blocker-induced tile buffering, where a large reservoir of blocked tiles slowly feeds a small unblocked tile subpopulation which acts like a regular, non-blocked, low tile concentration system, yet is capable of long-term buffered assembly. Finally, and perhaps most satisfyingly, theory and simulations align remarkably well with DNA self-assembly experiments over a wide range of concentrations and temperatures, matching the size of growth temperature windows to within 12%. Blockers are a straightforward solution to the challenging problem of simultaneously and independently controlling growth and nucleation, using a motif compatible with many DNA tile systems.
@InProceedings{evans_et_al:LIPIcs.DNA.31.7, author = {Evans, Constantine G. and Cervera Roldan, Angel and Rogers, Trent and Woods, Damien}, title = {{Tile Blockers as a Simple Motif to Control Self-Assembly: Kinetics and Thermodynamics}}, booktitle = {31st International Conference on DNA Computing and Molecular Programming (DNA 31)}, pages = {7:1--7:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-399-7}, ISSN = {1868-8969}, year = {2025}, volume = {347}, editor = {Schaeffer, Josie and Zhang, Fei}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.31.7}, URN = {urn:nbn:de:0030-drops-238564}, doi = {10.4230/LIPIcs.DNA.31.7}, annote = {Keywords: Self-assembly, kinetic model, kinetic simulation, thermodynamic prediction} }
Feedback for Dagstuhl Publishing