Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

Authors Sunil Arya, Guilherme D. da Fonseca, David M. Mount



PDF
Thumbnail PDF

File

LIPIcs.ESA.2018.3.pdf
  • Filesize: 0.59 MB
  • 14 pages

Document Identifiers

Author Details

Sunil Arya
  • Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Guilherme D. da Fonseca
  • Université Clermont Auvergne, LIMOS, and INRIA Sophia Antipolis, France
David M. Mount
  • Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD, USA

Cite AsGet BibTex

Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ESA.2018.3

Abstract

Approximation problems involving a single convex body in R^d have received a great deal of attention in the computational geometry community. In contrast, works involving multiple convex bodies are generally limited to dimensions d <= 3 and/or do not consider approximation. In this paper, we consider approximations to two natural problems involving multiple convex bodies: detecting whether two polytopes intersect and computing their Minkowski sum. Given an approximation parameter epsilon > 0, we show how to independently preprocess two polytopes A,B subset R^d into data structures of size O(1/epsilon^{(d-1)/2}) such that we can answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this for the images of A and B under affine transformations. Next, we show how to epsilon-approximate the Minkowski sum of two given polytopes defined as the intersection of n halfspaces in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0. Finally, we present a surprising impact of these results to a well studied problem that considers a single convex body. We show how to epsilon-approximate the width of a set of n points in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0, a major improvement over the previous bound of roughly O(n + 1/epsilon^{d-1}) time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Minkowski sum
  • convex intersection
  • width
  • approximation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl., 21(1):39-61, 2002. Google Scholar
  2. P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir. Penetration depth of two convex polytopes in 3D. Nordic J. of Computing, 7(3):227-240, 2000. Google Scholar
  3. P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random Minkowski sums and network vulnerability analysis. Discrete Comput. Geom., 52(3):551-582, 2014. Google Scholar
  4. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. J. Assoc. Comput. Mach., 51:606-635, 2004. Google Scholar
  5. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry. MSRI Publications, 2005. Google Scholar
  6. P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189-201, 1992. Google Scholar
  7. B. Aronov and M. Sharir. On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput., 26(6):1785-1803, 1997. Google Scholar
  8. S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor search, Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Annu. Sympos. Comput. Geom., pages 416-425, 2014. Google Scholar
  9. S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1-15, 2017. URL: https://arxiv.org/abs/1604.01175.
  10. S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating polytopes. Discrete Comput. Geom., 58(4):849-870, 2017. Google Scholar
  11. S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017. Google Scholar
  12. S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. SIAM J. Comput., 47(1):1-51, 2018. Google Scholar
  13. L. Barba and S. Langerman. Optimal detection of intersections between convex polyhedra. In Proc. 26th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1641-1654, 2015. Google Scholar
  14. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms, 38(1):91-109, 2001. Google Scholar
  15. J.-D. Boissonnat, E. De Lange, and M. Teillaud. Minkowski operations for satellite antenna layout. In Proc. 13th Annu. Sympos. Comput. Geom., pages 67-76, 1997. Google Scholar
  16. E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra. Siberian Math. J., 16:852-853, 1976. Google Scholar
  17. T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Internat. J. Comput. Geom. Appl., 12:67-85, 2002. Google Scholar
  18. T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl., 35(1):20-35, 2006. Google Scholar
  19. T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1-15, 2017. Google Scholar
  20. B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput., 21(4):671-696, 1992. Google Scholar
  21. B. Chazelle and D. P. Dobkin. Detection is easier than computation. In Proc. 12th Annu. ACM Sympos. Theory Comput., pages 146-153, 1980. Google Scholar
  22. B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. Assoc. Comput. Mach., 34:1-27, 1987. Google Scholar
  23. B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms, 21:579-597, 1996. Google Scholar
  24. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2010. Google Scholar
  25. D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theo. Comp. Sci., 27(3):241-253, 1983. Google Scholar
  26. D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra - A unified approach. In Proc. Internat. Colloq. Automata Lang. Prog., pages 400-413, 1990. Google Scholar
  27. R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory, 10(3):227-236, 1974. Google Scholar
  28. C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and optimization algorithms for computational metrology. In Proc. Eighth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 121-130, 1997. Google Scholar
  29. E. Fogel, D. Halperin, and C. Weibel. On the exact maximum complexity of Minkowski sums of polytopes. Discrete Comput. Geom., 42(4):654-669, 2009. Google Scholar
  30. X. Guo, L. Xie, and Y. Gao. Optimal accurate Minkowski sum approximation of polyhedral models. Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues, pages 179-188, 2008. Google Scholar
  31. D. Halperin, O. Salzman, and M. Sharir. Algorithmic motion planning. In J. E. Goodman, J. O'Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, Discrete Mathematics and its Applications. CRC Press, 2017. Google Scholar
  32. S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity of a single face of a Minkowski sum. In Proc. Seventh Canad. Conf. Comput. Geom., pages 91-96, 1995. Google Scholar
  33. P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: A survey. Computers &Graphics, 25(2):269-285, 2001. Google Scholar
  34. F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187-204. Interscience Publishers, Inc., New York, 1948. Google Scholar
  35. A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and animation of pips. Computers &graphics, 16(1):107-115, 1992. Google Scholar
  36. M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In Proc. of IMA conference on mathematics of surfaces, volume 1, pages 602-608, 1998. Google Scholar
  37. D. M. Mount. Geometric intersection. In J. E. Goodman, J. O'Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, Discrete Mathematics and its Applications. CRC Press, 2017. Google Scholar
  38. D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theo. Comp. Sci., 7(2):217-236, 1978. Google Scholar
  39. J. O'Rourke. Computational geometry in C. Cambridge University Press, 1998. Google Scholar
  40. L. Pachter and B. Sturmfels. Algebraic statistics for computational biology, volume 13. Cambridge University Press, 2005. Google Scholar
  41. R. Schneider. Convex bodies: The Brunn-Minkowski theory. Cambridge University Press, 1993. Google Scholar
  42. M. I. Shamos. Geometric complexity. In Proc. Seventh Annu. ACM Sympos. Theory Comput., pages 224-233, 1975. Google Scholar
  43. H. R. Tiwary. On the hardness of computing intersection, union and Minkowski sum of polytopes. Discrete Comput. Geom., 40(3):469-479, 2008. Google Scholar
  44. G. Varadhan and D. Manocha. Accurate Minkowski sum approximation of polyhedral models. Graphical Models, 68(4):343-355, 2006. Google Scholar
  45. H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape fitting and kinetic data structures using coresets. Algorithmica, 52(3):378-402, 2008. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail