Document

# Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums

## File

LIPIcs.ESA.2018.3.pdf
• Filesize: 0.59 MB
• 14 pages

## Cite As

Sunil Arya, Guilherme D. da Fonseca, and David M. Mount. Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.ESA.2018.3

## Abstract

Approximation problems involving a single convex body in R^d have received a great deal of attention in the computational geometry community. In contrast, works involving multiple convex bodies are generally limited to dimensions d <= 3 and/or do not consider approximation. In this paper, we consider approximations to two natural problems involving multiple convex bodies: detecting whether two polytopes intersect and computing their Minkowski sum. Given an approximation parameter epsilon > 0, we show how to independently preprocess two polytopes A,B subset R^d into data structures of size O(1/epsilon^{(d-1)/2}) such that we can answer in polylogarithmic time whether A and B intersect approximately. More generally, we can answer this for the images of A and B under affine transformations. Next, we show how to epsilon-approximate the Minkowski sum of two given polytopes defined as the intersection of n halfspaces in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0. Finally, we present a surprising impact of these results to a well studied problem that considers a single convex body. We show how to epsilon-approximate the width of a set of n points in O(n log(1/epsilon) + 1/epsilon^{(d-1)/2 + alpha}) time, for any constant alpha > 0, a major improvement over the previous bound of roughly O(n + 1/epsilon^{d-1}) time.

## Subject Classification

##### ACM Subject Classification
• Theory of computation → Computational geometry
##### Keywords
• Minkowski sum
• convex intersection
• width
• approximation

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. P. K. Agarwal, E. Flato, and D. Halperin. Polygon decomposition for efficient construction of Minkowski sums. Comput. Geom. Theory Appl., 21(1):39-61, 2002.
2. P. K. Agarwal, L. J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir. Penetration depth of two convex polytopes in 3D. Nordic J. of Computing, 7(3):227-240, 2000.
3. P. K. Agarwal, S. Har-Peled, H. Kaplan, and M. Sharir. Union of random Minkowski sums and network vulnerability analysis. Discrete Comput. Geom., 52(3):551-582, 2014.
4. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent measures of points. J. Assoc. Comput. Mach., 51:606-635, 2004.
5. P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via coresets. In J. E. Goodman, J. Pach, and E. Welzl, editors, Combinatorial and Computational Geometry. MSRI Publications, 2005.
6. P. K. Agarwal, J. Matoušek, and S. Suri. Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Comput. Geom. Theory Appl., 1(4):189-201, 1992.
7. B. Aronov and M. Sharir. On translational motion planning of a convex polyhedron in 3-space. SIAM J. Comput., 26(6):1785-1803, 1997.
8. S. Arya and T. M. Chan. Better ε-dependencies for offline approximate nearest neighbor search, Euclidean minimum spanning trees, and ε-kernels. In Proc. 30th Annu. Sympos. Comput. Geom., pages 416-425, 2014.
9. S. Arya, G. D. da Fonseca, and D. M. Mount. Near-optimal ε-kernel construction and related problems. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 10:1-15, 2017. URL: https://arxiv.org/abs/1604.01175.
10. S. Arya, G. D. da Fonseca, and D. M. Mount. On the combinatorial complexity of approximating polytopes. Discrete Comput. Geom., 58(4):849-870, 2017.
11. S. Arya, G. D. da Fonseca, and D. M. Mount. Optimal approximate polytope membership. In Proc. 28th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 270-288, 2017.
12. S. Arya, G. D. da Fonseca, and D. M. Mount. Approximate polytope membership queries. SIAM J. Comput., 47(1):1-51, 2018.
13. L. Barba and S. Langerman. Optimal detection of intersections between convex polyhedra. In Proc. 26th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1641-1654, 2015.
14. G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms, 38(1):91-109, 2001.
15. J.-D. Boissonnat, E. De Lange, and M. Teillaud. Minkowski operations for satellite antenna layout. In Proc. 13th Annu. Sympos. Comput. Geom., pages 67-76, 1997.
16. E. M. Bronshteyn and L. D. Ivanov. The approximation of convex sets by polyhedra. Siberian Math. J., 16:852-853, 1976.
17. T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Internat. J. Comput. Geom. Appl., 12:67-85, 2002.
18. T. M. Chan. Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. Theory Appl., 35(1):20-35, 2006.
19. T. M. Chan. Applications of Chebyshev polynomials to low-dimensional computational geometry. In Proc. 33rd Internat. Sympos. Comput. Geom., pages 26:1-15, 2017.
20. B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput., 21(4):671-696, 1992.
21. B. Chazelle and D. P. Dobkin. Detection is easier than computation. In Proc. 12th Annu. ACM Sympos. Theory Comput., pages 146-153, 1980.
22. B. Chazelle and D. P. Dobkin. Intersection of convex objects in two and three dimensions. J. Assoc. Comput. Mach., 34:1-27, 1987.
23. B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms, 21:579-597, 1996.
24. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algorithms and Applications. Springer, 3rd edition, 2010.
25. D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral intersection. Theo. Comp. Sci., 27(3):241-253, 1983.
26. D. P. Dobkin and D. G. Kirkpatrick. Determining the separation of preprocessed polyhedra - A unified approach. In Proc. Internat. Colloq. Automata Lang. Prog., pages 400-413, 1990.
27. R. M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. J. Approx. Theory, 10(3):227-236, 1974.
28. C. A. Duncan, M. T. Goodrich, and E. A. Ramos. Efficient approximation and optimization algorithms for computational metrology. In Proc. Eighth Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 121-130, 1997.
29. E. Fogel, D. Halperin, and C. Weibel. On the exact maximum complexity of Minkowski sums of polytopes. Discrete Comput. Geom., 42(4):654-669, 2009.
30. X. Guo, L. Xie, and Y. Gao. Optimal accurate Minkowski sum approximation of polyhedral models. Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues, pages 179-188, 2008.
31. D. Halperin, O. Salzman, and M. Sharir. Algorithmic motion planning. In J. E. Goodman, J. O'Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, Discrete Mathematics and its Applications. CRC Press, 2017.
32. S. Har-Peled, T. M. Chan, B. Aronov, D. Halperin, and J. Snoeyink. The complexity of a single face of a Minkowski sum. In Proc. Seventh Canad. Conf. Comput. Geom., pages 91-96, 1995.
33. P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: A survey. Computers &Graphics, 25(2):269-285, 2001.
34. F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, pages 187-204. Interscience Publishers, Inc., New York, 1948.
35. A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and animation of pips. Computers &graphics, 16(1):107-115, 1992.
36. M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In Proc. of IMA conference on mathematics of surfaces, volume 1, pages 602-608, 1998.
37. D. M. Mount. Geometric intersection. In J. E. Goodman, J. O'Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational Geometry, Discrete Mathematics and its Applications. CRC Press, 2017.
38. D. E. Muller and F. P. Preparata. Finding the intersection of two convex polyhedra. Theo. Comp. Sci., 7(2):217-236, 1978.
39. J. O'Rourke. Computational geometry in C. Cambridge University Press, 1998.
40. L. Pachter and B. Sturmfels. Algebraic statistics for computational biology, volume 13. Cambridge University Press, 2005.
41. R. Schneider. Convex bodies: The Brunn-Minkowski theory. Cambridge University Press, 1993.
42. M. I. Shamos. Geometric complexity. In Proc. Seventh Annu. ACM Sympos. Theory Comput., pages 224-233, 1975.
43. H. R. Tiwary. On the hardness of computing intersection, union and Minkowski sum of polytopes. Discrete Comput. Geom., 40(3):469-479, 2008.
44. G. Varadhan and D. Manocha. Accurate Minkowski sum approximation of polyhedral models. Graphical Models, 68(4):343-355, 2006.
45. H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadarajan. Practical methods for shape fitting and kinetic data structures using coresets. Algorithmica, 52(3):378-402, 2008.