Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs

Authors Fedor V. Fomin , Petr A. Golovach



PDF
Thumbnail PDF

File

LIPIcs.ESA.2020.49.pdf
  • Filesize: 0.59 MB
  • 17 pages

Document Identifiers

Author Details

Fedor V. Fomin
  • Department of Informatics, University of Bergen, Norway
Petr A. Golovach
  • Department of Informatics, University of Bergen, Norway

Acknowledgements

We thank Torstein Strømme, Daniel Lokshtanov, and Pranabendu Misra for fruitful discussions on the topic of this paper. We also grateful to Saket Saurabh for helpful suggestions that allowed us to improve our results.

Cite AsGet BibTex

Fedor V. Fomin and Petr A. Golovach. Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 49:1-49:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ESA.2020.49

Abstract

We study algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. We discover that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from Chordal-ke. While various parameterized algorithms on graphs for many structural parameters like vertex cover or treewidth can be found in the literature, up to the Exponential Time Hypothesis (ETH), the existence of subexponential parameterized algorithms for most of the structural parameters and optimization problems is highly unlikely. This is why we find the algorithmic behavior of the "fill-in parameterization" very unusual. Being intrigued by this behaviour, we identify a large class of optimization problems on Chordal-ke that admit algorithms with the typical running time 2^𝒪(√k log k) ⋅ n^𝒪(1). Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal-ke when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of Chordal-ke graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on Chordal-ke graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on Chordal-ke graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of Chordal-ke, namely, Interval-ke and Split-ke graphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Parameterized complexity
  • structural parameterization
  • subexponential algorithms
  • kernelization
  • chordal graphs
  • fill-in
  • independent set
  • clique
  • coloring

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms, 15(1):11:1-11:28, 2019. URL: https://doi.org/10.1145/3284356.
  2. Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex deletion admits a polynomial kernel. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1711-1730. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.103.
  3. Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 951-970. SIAM, 2020. Google Scholar
  4. Stephane Bessy and Anthony Perez. Polynomial kernels for Proper Interval Completion and related problems. Information and Computation, 231(0):89-108, 2013. URL: https://doi.org/10.1016/j.ic.2013.08.006.
  5. Ivan Bliznets, Fedor V. Fomin, Marcin Pilipczuk, and Michal Pilipczuk. Subexponential parameterized algorithm for interval completion. ACM Trans. Algorithms, 14(3):35:1-35:62, 2018. URL: https://doi.org/10.1145/3186896.
  6. Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86-111, 2015. URL: https://doi.org/10.1016/j.ic.2014.12.008.
  7. Hans L. Bodlaender, Pinar Heggernes, and Yngve Villanger. Faster parameterized algorithms for minimum fill-in. Algorithmica, 61(4):817-838, 2011. URL: https://doi.org/10.1007/s00453-010-9421-1.
  8. Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch. Kernelization lower bounds by cross-composition. SIAM J. Discrete Math., 28(1):277-305, 2014. URL: https://doi.org/10.1137/120880240.
  9. Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. URL: https://doi.org/10.1137/1.9780898719796.
  10. Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processing Letters, 58(4):171-176, 1996. URL: https://doi.org/10.1016/0020-0190(96)00050-6.
  11. Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathematics, 127(3):415-429, 2003. URL: https://doi.org/10.1016/S0166-218X(02)00242-1.
  12. Yixin Cao. Linear recognition of almost interval graphs. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096-1115. SIAM, 2016. Google Scholar
  13. Yixin Cao. Unit interval editing is fixed-parameter tractable. Inf. Comput., 253:109-126, 2017. URL: https://doi.org/10.1016/j.ic.2017.01.008.
  14. Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms, 11(3):21:1-21:35, 2015. URL: https://doi.org/10.1145/2629595.
  15. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL: https://doi.org/10.1016/0890-5401(90)90043-H.
  16. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  17. Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of perfect matchings. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pages 301-310. ACM, 2013. Google Scholar
  18. Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in single exponential time. In Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pages 150-159. IEEE, 2011. Google Scholar
  19. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  20. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  21. Michael Etscheid, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. Polynomial kernels for weighted problems. J. Comput. Syst. Sci., 84:1-10, 2017. URL: https://doi.org/10.1016/j.jcss.2016.06.004.
  22. Fedor V. Fomin and Petr A. Golovach. Subexponential parameterized algorithms and kernelization on almost chordal graphs. CoRR, abs/2002.08226, 2020. URL: http://arxiv.org/abs/2002.08226.
  23. Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1-29:60, 2016. URL: https://doi.org/10.1145/2886094.
  24. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Theory of Parameterized Preprocessing. Cambridge University Press, 2018. Google Scholar
  25. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization. Cambridge University Press, Cambridge, 2019. Theory of parameterized preprocessing. Google Scholar
  26. Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper interval vertex deletion. SIAM J. Discrete Math., 27(4):1964-1976, 2013. URL: https://doi.org/10.1137/12089051X.
  27. Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs via triangulations and CMSO. SIAM J. Comput., 44(1):54-87, 2015. URL: https://doi.org/10.1137/140964801.
  28. Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for minimum fill-in. SIAM J. Computing, 42(6):2197-2216, 2013. URL: https://doi.org/10.1137/11085390X.
  29. András Frank and Éva Tardos. An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica, 7(1):49-65, 1987. URL: https://doi.org/10.1007/BF02579200.
  30. Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979. Google Scholar
  31. Fanica Gavril. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM J. Comput., 1(2):180-187, 1972. URL: https://doi.org/10.1137/0201013.
  32. Fănică Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combinatorial Theory Ser. B, 16:47-56, 1974. URL: https://doi.org/10.1016/0095-8956(74)90094-x.
  33. Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980. Google Scholar
  34. Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin, second edition, 1993. URL: https://doi.org/10.1007/978-3-642-78240-4.
  35. Peter L. Hammer and Bruno Simeone. The splittance of a graph. Combinatorica, 1(3):275-284, 1981. URL: https://doi.org/10.1007/BF02579333.
  36. Pinar Heggernes. Minimal triangulations of graphs: a survey. Discrete Math., 306(3):297-317, 2006. URL: https://doi.org/10.1016/j.disc.2005.12.003.
  37. Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6, 1999, pages 237-240. IEEE Computer Society, 1999. URL: https://doi.org/10.1109/CCC.1999.766282.
  38. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly exponential complexity. J. Computer and System Sciences, 63(4):512-530, 2001. Google Scholar
  39. Bart M. P. Jansen and Hans L. Bodlaender. Vertex cover kernelization revisited - upper and lower bounds for a refined parameter. Theory Comput. Syst., 53(2):263-299, 2013. URL: https://doi.org/10.1007/s00224-012-9393-4.
  40. Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex deletion. SIAM J. Discrete Math., 32(3):2258-2301, 2018. URL: https://doi.org/10.1137/17M112035X.
  41. Bart MP Jansen and Stefan Kratsch. Data reduction for graph coloring problems. Information and Computation, 231:70-88, 2013. Google Scholar
  42. Haim Kaplan, Ron Shamir, and Robert E. Tarjan. Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput., 28:1906-1922, May 1999. URL: https://doi.org/10.1137/S0097539796303044.
  43. Haim Kaplan, Ron Shamir, and Robert Endre Tarjan. Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS), pages 780-791. IEEE, 1994. Google Scholar
  44. J. Mark Keil. Finding hamiltonian circuits in interval graphs. Inf. Process. Lett., 20(4):201-206, 1985. URL: https://doi.org/10.1016/0020-0190(85)90050-X.
  45. C. G. Lekkerkerker and J. Ch. Boland. Representation of a finite graph by a set of intervals on the real line. Fund. Math., 51:45-64, 1962/1963. URL: https://doi.org/10.4064/fm-51-1-45-64.
  46. Mathieu Liedloff, Pedro Montealegre, and Ioan Todinca. Beyond classes of graphs with "few" minimal separators: FPT results through potential maximal cliques. Algorithmica, 81(3):986-1005, 2019. URL: https://doi.org/10.1007/s00453-018-0453-2.
  47. Dániel Marx. Parameterized coloring problems on chordal graphs. Theoretical Computer Science, 351(3):407-424, 2006. Google Scholar
  48. Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747-768, 2010. URL: https://doi.org/10.1007/s00453-008-9233-8.
  49. Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm for the minimum fill-in problem. In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 41-47. ACM, 1998. URL: https://doi.org/10.1145/276698.276710.
  50. Assaf Natanzon, Ron Shamir, and Roded Sharan. Complexity classification of some edge modification problems. Discrete Applied Mathematics, 113(1):109-128, 2001. URL: https://doi.org/10.1016/S0166-218X(00)00391-7.
  51. Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-27875-4.
  52. S. Parter. The use of linear graphs in Gauss elimination. SIAM Review, 3:119-130, 1961. Google Scholar
  53. Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time: a logical approach. CoRR, abs/1104.3057, 2011. URL: http://arxiv.org/abs/1104.3057.
  54. Satish Rao and Andréa W. Richa. New approximation techniques for some linear ordering problems. SIAM J. Comput., 34(2):388-404, 2004. URL: https://doi.org/10.1137/S0097539702413197.
  55. D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In R. C. Read, editor, Graph Theory and Computing, pages 183-217. Academic Press, New York, 1972. Google Scholar
  56. Yasuhiko Takenaga and Kenichi Higashide. Vertex coloring of comparability +ke and- -ke graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 102-112. Springer, 2006. Google Scholar
  57. Robert Endre Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput., 13(3):566-579, 1984. URL: https://doi.org/10.1137/0213035.
  58. Lieven Vandenberghe, Martin S Andersen, et al. Chordal graphs and semidefinite optimization. Foundations and Trendsregistered in Optimization, 1(4):241-433, 2015. Google Scholar
  59. Yngve Villanger, Pinar Heggernes, Christophe Paul, and Jan Arne Telle. Interval completion is fixed parameter tractable. SIAM J. Comput., 38(5):2007-2020, 2009. URL: https://doi.org/10.1137/070710913.
  60. M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2:77-79, 1981. Google Scholar