Approximate Turing Kernelization for Problems Parameterized by Treewidth

Authors Eva-Maria C. Hols , Stefan Kratsch , Astrid Pieterse



PDF
Thumbnail PDF

File

LIPIcs.ESA.2020.60.pdf
  • Filesize: 0.68 MB
  • 23 pages

Document Identifiers

Author Details

Eva-Maria C. Hols
  • Department of Computer Science, Humboldt-Universität zu Berlin, Germany
Stefan Kratsch
  • Department of Computer Science, Humboldt-Universität zu Berlin, Germany
Astrid Pieterse
  • Department of Computer Science, Humboldt-Universität zu Berlin, Germany

Cite AsGet BibTex

Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Approximate Turing Kernelization for Problems Parameterized by Treewidth. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 60:1-60:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.ESA.2020.60

Abstract

We extend the notion of lossy kernelization, introduced by Lokshtanov et al. [STOC 2017], to approximate Turing kernelization. An α-approximate Turing kernel for a parameterized optimization problem is a polynomial-time algorithm that, when given access to an oracle that outputs c-approximate solutions in 𝒪(1) time, obtains an α ⋅ c-approximate solution to the considered problem, using calls to the oracle of size at most f(k) for some function f that only depends on the parameter. Using this definition, we show that Independent Set parameterized by treewidth 𝓁 has a (1+ε)-approximate Turing kernel with 𝒪(𝓁²/ε) vertices, answering an open question posed by Lokshtanov et al. [STOC 2017]. Furthermore, we give (1+ε)-approximate Turing kernels for the following graph problems parameterized by treewidth: Vertex Cover, Edge Clique Cover, Edge-Disjoint Triangle Packing and Connected Vertex Cover. We generalize the result for Independent Set and Vertex Cover, by showing that all graph problems that we will call friendly admit (1+ε)-approximate Turing kernels of polynomial size when parameterized by treewidth. We use this to obtain approximate Turing kernels for Vertex-Disjoint H-packing for connected graphs H, Clique Cover, Feedback Vertex Set and Edge Dominating Set.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
Keywords
  • Approximation
  • Turing kernelization
  • Graph problems
  • Treewidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex deletion admits a polynomial kernel. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1711-1730. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.103.
  2. Ann Becker and Dan Geiger. Optimization of pearl’s method of conditioning and greedy-like approximation algorithms for the vertex feedback set problem. Artificial Intelligence, 83(1):167-188, 1996. URL: https://doi.org/10.1016/0004-3702(95)00004-6.
  3. Daniel Binkele-Raible, Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Kernel(s) for problems with no kernel: On out-trees with many leaves. ACM Trans. Algorithms, 8(4):38:1-38:19, 2012. URL: https://doi.org/10.1145/2344422.2344428.
  4. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423-434, 2009. URL: https://doi.org/10.1016/j.jcss.2009.04.001.
  5. Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1-44:69, 2016. URL: https://doi.org/10.1145/2973749.
  6. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel bounds for disjoint cycles and disjoint paths. Theor. Comput. Sci., 412(35):4570-4578, 2011. URL: https://doi.org/10.1016/j.tcs.2011.04.039.
  7. Yixin Cao, Ashutosh Rai, R. B. Sandeep, and Junjie Ye. A polynomial kernel for diamond-free editing. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 10:1-10:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.10.
  8. Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dusan Knop, and Peter Zeman. Kernelization of graph hamiltonicity: Proper h-graphs. In Zachary Friggstad, Jörg-Rüdiger Sack, and Mohammad R. Salavatipour, editors, Algorithms and Data Structures - 16th International Symposium, WADS 2019, Edmonton, AB, Canada, August 5-7, 2019, Proceedings, volume 11646 of Lecture Notes in Computer Science, pages 296-310. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-24766-9_22.
  9. Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further improvements. In Peter Widmayer, Gabriele Neyer, and Stephan Eidenbenz, editors, Graph-Theoretic Concepts in Computer Science, pages 313-324, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. Google Scholar
  10. Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, MichałPilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  11. Marek Cygan, Stefan Kratsch, Marcin Pilipczuk, Michał Pilipczuk, and Magnus Wahlström. Clique cover and graph separation: New incompressibility results. ACM Trans. Comput. Theory, 6(2):6:1-6:19, 2014. URL: https://doi.org/10.1145/2594439.
  12. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms, 11(2):13:1-13:20, 2014. URL: https://doi.org/10.1145/2650261.
  13. Eduard Eiben, Danny Hermelin, and M. S. Ramanujan. Lossy kernels for hitting subgraphs. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, volume 83 of LIPIcs, pages 67:1-67:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.MFCS.2017.67.
  14. Eduard Eiben, Mithilesh Kumar, Amer E. Mouawad, Fahad Panolan, and Sebastian Siebertz. Lossy kernels for connected dominating set on sparse graphs. SIAM J. Discrete Math., 33(3):1743-1771, 2019. URL: https://doi.org/10.1137/18M1172508.
  15. Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput., 38(2):629-657, 2008. URL: https://doi.org/10.1137/05064299X.
  16. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-deletion: Approximation, kernelization and optimal FPT algorithms. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 470-479. IEEE Computer Society, 2012. URL: https://doi.org/10.1109/FOCS.2012.62.
  17. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781107415157.
  18. Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct pcps for NP. J. Comput. Syst. Sci., 77(1):91-106, 2011. URL: https://doi.org/10.1016/j.jcss.2010.06.007.
  19. Pierre Fraigniaud and Nicolas Nisse. Connected treewidth and connected graph searching. In LATIN 2006: Theoretical Informatics, 7th Latin American Symposium, Valdivia, Chile, March 20-24, 2006, Proceedings, pages 479-490, 2006. URL: https://doi.org/10.1007/11682462_45.
  20. Toshihiro Fujito and Hiroshi Nagamochi. A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Applied Mathematics, 118(3):199-207, 2002. URL: https://doi.org/10.1016/S0166-218X(00)00383-8.
  21. Torben Hagerup. Kernels for edge dominating set: Simpler or smaller. In Mathematical Foundations of Computer Science 2012 - 37th International Symposium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, pages 491-502, 2012. URL: https://doi.org/10.1007/978-3-642-32589-2_44.
  22. Danny Hermelin, Stefan Kratsch, Karolina Soltys, Magnus Wahlström, and Xi Wu. A completeness theory for polynomial (turing) kernelization. Algorithmica, 71(3):702-730, 2015. URL: https://doi.org/10.1007/s00453-014-9910-8.
  23. Eva-Maria C. Hols and Stefan Kratsch. On kernelization for edge dominating set under structural parameters. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 36:1-36:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.STACS.2019.36.
  24. Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Approximate turing kernelization for problems parameterized by treewidth. CoRR, abs/2004.12683, 2020. URL: http://arxiv.org/abs/2004.12683v1.
  25. Bart M. P. Jansen. Turing kernelization for finding long paths and cycles in restricted graph classes. J. Comput. Syst. Sci., 85:18-37, 2017. URL: https://doi.org/10.1016/j.jcss.2016.10.008.
  26. Bart M. P. Jansen and Dániel Marx. Characterizing the easy-to-find subgraphs from the viewpoint of polynomial-time algorithms, kernels, and turing kernels. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 616-629. SIAM, 2015. URL: https://doi.org/10.1137/1.9781611973730.42.
  27. Bart M. P. Jansen and Astrid Pieterse. Polynomial kernels for hitting forbidden minors under structural parameterizations. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 48:1-48:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ESA.2018.48.
  28. Bart M. P. Jansen, Marcin Pilipczuk, and Erik Jan van Leeuwen. A deterministic polynomial kernel for odd cycle transversal and vertex multiway cut in planar graphs. In Rolf Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs, pages 39:1-39:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.STACS.2019.39.
  29. Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450-459. IEEE Computer Society, 2012. URL: https://doi.org/10.1109/FOCS.2012.46.
  30. Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 224-237, 2017. URL: https://doi.org/10.1145/3055399.3055456.
  31. Rolf Niedermeier and Christophe Paul, editors. 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, March 13-16, 2019, Berlin, Germany, volume 126 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: http://www.dagstuhl.de/dagpub/978-3-95977-100-9.
  32. M. S. Ramanujan. An approximate kernel for connected feedback vertex set. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 77:1-77:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.77.
  33. Carla D. Savage. Depth-first search and the vertex cover problem. Inf. Process. Lett., 14(5):233-237, 1982. URL: https://doi.org/10.1016/0020-0190(82)90022-9.
  34. Stéphan Thomassé, Nicolas Trotignon, and Kristina Vuskovic. A polynomial turing-kernel for weighted independent set in bull-free graphs. Algorithmica, 77(3):619-641, 2017. URL: https://doi.org/10.1007/s00453-015-0083-x.
  35. Jouke Witteveen, Ralph Bottesch, and Leen Torenvliet. A hierarchy of polynomial kernels. In Barbara Catania, Rastislav Královic, Jerzy R. Nawrocki, and Giovanni Pighizzini, editors, SOFSEM 2019: Theory and Practice of Computer Science - 45th International Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 27-30, 2019, Proceedings, volume 11376 of Lecture Notes in Computer Science, pages 504-518. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-10801-4_39.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail