In this paper we consider the online Submodular Welfare (SW) problem. In this problem we are given n bidders each equipped with a general non-negative (not necessarily monotone) submodular utility and m items that arrive online. The goal is to assign each item, once it arrives, to a bidder or discard it, while maximizing the sum of utilities. When an adversary determines the items' arrival order we present a simple randomized algorithm that achieves a tight competitive ratio of 1/4. The algorithm is a specialization of an algorithm due to [Harshaw-Kazemi-Feldman-Karbasi MOR`22], who presented the previously best known competitive ratio of 3-2√2≈ 0.171573 to the problem. When the items' arrival order is uniformly random, we present a competitive ratio of ≈ 0.27493, improving the previously known 1/4 guarantee. Our approach for the latter result is based on a better analysis of the (offline) Residual Random Greedy (RRG) algorithm of [Buchbinder-Feldman-Naor-Schwartz SODA`14], which we believe might be of independent interest.
@InProceedings{ganz_et_al:LIPIcs.ESA.2023.52, author = {Ganz, Amit and Nuti, Pranav and Schwartz, Roy}, title = {{A Tight Competitive Ratio for Online Submodular Welfare Maximization}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {52:1--52:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.52}, URN = {urn:nbn:de:0030-drops-187052}, doi = {10.4230/LIPIcs.ESA.2023.52}, annote = {Keywords: Online Algorithms, Submodular Maximization, Welfare Maximization, Approximation Algorithms} }
Feedback for Dagstuhl Publishing