Sparse Outerstring Graphs Have Logarithmic Treewidth

Authors Shinwoo An, Eunjin Oh, Jie Xue



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.10.pdf
  • Filesize: 1.01 MB
  • 18 pages

Document Identifiers

Author Details

Shinwoo An
  • Pohang University of Science and Technology, South Korea
Eunjin Oh
  • Pohang University of Science and Technology, South Korea
Jie Xue
  • New York University Shanghai, China

Cite AsGet BibTex

Shinwoo An, Eunjin Oh, and Jie Xue. Sparse Outerstring Graphs Have Logarithmic Treewidth. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.10

Abstract

An outerstring graph is the intersection graph of curves lying inside a disk with one endpoint on the boundary of the disk. We show that an outerstring graph with n vertices has treewidth O(αlog n), where α denotes the arboricity of the graph, with an almost matching lower bound of Ω(α log (n/α)). As a corollary, we show that a t-biclique-free outerstring graph has treewidth O(t(log t)log n). This leads to polynomial-time algorithms for most of the central NP-complete problems such as Independent Set, Vertex Cover, Dominating Set, Feedback Vertex Set, Coloring for sparse outerstring graphs. Also, we can obtain subexponential-time (exact, parameterized, and approximation) algorithms for various NP-complete problems such as Vertex Cover, Feedback Vertex Set and Cycle Packing for (not necessarily sparse) outerstring graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
Keywords
  • Outerstring graphs
  • geometric intersection graphs
  • treewidth

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pierre Aboulker, Isolde Adler, Eun Jung Kim, Ni Luh Dewi Sintiari, and Nicolas Trotignon. On the tree-width of even-hole-free graphs. European Journal of Combinatorics, 98:103394, 2021. Google Scholar
  2. Tara Abrishami, Maria Chudnovsky, and Kristina Vušković. Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree. Journal of Combinatorial Theory, Series B, 157:144-175, 2022. Google Scholar
  3. Shinwoo An, Kyungjin Cho, and Eunjin Oh. Faster algorithms for cycle hitting problems on disk graphs. In Proceedings of the 18th Algorithms and Data Structures Symposium (WADS 2023), pages 29-42, 2023. Google Scholar
  4. Shinwoo An and Eunjin Oh. Feedback vertex set on geometric intersection graphs. In Proceedings of the 32nd International Symposium on Algorithms and Computation (ISAAC 2021), 2021. Google Scholar
  5. Shinwoo An and Eunjin Oh. Eth-Tight Algorithm for Cycle Packing on Unit Disk Graphs. In 40th International Symposium on Computational Geometry (SoCG 2024), 2024. Google Scholar
  6. Sujoy Bhore, Satyabrata Jana, Supantha Pandit, and Sasanka Roy. The balanced connected subgraph problem for geometric intersection graphs. Theoretical Computer Science, 929:69-80, 2022. Google Scholar
  7. Therese Biedl, Ahmad Biniaz, and Martin Derka. On the size of outer-string representations. In Proceedings of the 16th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2018), pages 10:1-10:14, 2018. Google Scholar
  8. Marthe Bonamy, Édouard Bonnet, Hugues Déprés, Louis Esperet, Colin Geniet, Claire Hilaire, Stéphan Thomassé, and Alexandra Wesolek. Sparse graphs with bounded induced cycle packing number have logarithmic treewidth. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2023), pages 3006-3028. SIAM, 2023. Google Scholar
  9. Édouard Bonnet and Paweł Rzążewski. Optimality program in segment and string graphs. Algorithmica, 81:3047-3073, 2019. Google Scholar
  10. Prosenjit Bose, Paz Carmi, J Mark Keil, Anil Maheshwari, Saeed Mehrabi, Debajyoti Mondal, and Michiel Smid. Computing maximum independent set on outerstring graphs and their relatives. Computational Geometry, 103:101852, 2022. Google Scholar
  11. Sergio Cabello, Jean Cardinal, and Stefan Langerman. The clique problem in ray intersection graphs. Discrete & Computational Geometry, 50:771-783, 2013. Google Scholar
  12. Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogtenhuber. Intersection graphs of rays and grounded segments. Journal of Graph Algorithms and Applications, 22(2):273-295, 2018. Google Scholar
  13. Maria Chudnovsky, Tara Abrishami, Sepehr Hajebi, and Sophie Spirkl. Induced subgraphs and tree decompositions III. Three-path-configurations and logarithmic treewidth. Advances in Combinatorics, 2022:6, 2022. Google Scholar
  14. Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms, volume 5. Springer, 2015. Google Scholar
  15. Peter Damaschke. The Hamiltonian circuit problem for circle graphs is NP-complete. Information Processing Letters, 32(1):1-2, 1989. Google Scholar
  16. Mark De Berg, Hans L Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C Van Der Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds in geometric intersection graphs. SIAM Journal on Computing, 49(6):1291-1331, 2020. Google Scholar
  17. Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous. Clique-based separators for geometric intersection graphs. Algorithmica, 85(6):1652-1678, 2023. Google Scholar
  18. Zdeněk Dvořák and Sergey Norin. Treewidth of graphs with balanced separations. Journal of Combinatorial Theory, Series B, 137:137-144, 2019. Google Scholar
  19. Gideon Ehrlich, Shimon Even, and Robert Endre Tarjan. Intersection graphs of curves in the plane. Journal of Combinatorial Theory, Series B, 21(1):8-20, 1976. Google Scholar
  20. Holger Flier, Matúš Mihalák, Anita Schöbel, Peter Widmayer, and Anna Zych. Vertex disjoint paths for dispatching in railways. In Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS'10), 2010. Google Scholar
  21. Jacob Fox. A bipartite analogue of Dilworth’s theorem. Order, 23(2-3):197-209, 2006. Google Scholar
  22. Jacob Fox and János Pach. A separator theorem for string graphs and its applications. Combinatorics, Probability and Computing, 19(3):371-390, 2010. Google Scholar
  23. Jacob Fox and János Pach. Coloring K_k-free intersection graphs of geometric objects in the plane. European Journal of Combinatorics, 33:853-866, 2012. Google Scholar
  24. Jacob Fox and János Pach. String graphs and incomparability graphs. Advances in Mathematics, 230(3):1381-1401, 2012. Google Scholar
  25. Zachary Friggstad and Mohammad R Salavatipour. Approximability of packing disjoint cycles. Algorithmica, 60(2):395-400, 2011. Google Scholar
  26. Michael R Garey, David S Johnson, Gary L Miller, and Christos H Papadimitriou. The complexity of coloring circular arcs and chords. SIAM Journal on Algebraic Discrete Methods, 1(2):216-227, 1980. Google Scholar
  27. Tomáš Gavenčiak, Przemysław Gordinowicz, Vít Jelínek, Pavel Klavík, and Jan Kratochvíl. Cops and robbers on intersection graphs. European Journal of Combinatorics, 72:45-69, 2018. Google Scholar
  28. J Mark Keil. The complexity of domination problems in circle graphs. Discrete Applied Mathematics, 42(1):51-63, 1993. Google Scholar
  29. J Mark Keil, Joseph SB Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An algorithm for the maximum weight independent set problem on outerstring graphs. Computational Geometry, 60:19-25, 2017. Google Scholar
  30. Sándor Kisfaludi-Bak, Karolina Okrasa, and Paweł Rzążewski. Computing list homomorphisms in geometric intersection graphs. In Proceedings of the International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2022), pages 313-327. Springer, 2022. Google Scholar
  31. Hui Kong, Qiang Ma, Tan Yan, and Martin DF Wong. An optimal algorithm for finding disjoint rectangles and its application to PCB routing. In Proceedings of the 47th Design Automation Conference (DAC 2010), pages 212-217, 2010. Google Scholar
  32. Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. SIAM Journal on Computing, pages FOCS21-174, 2023. Google Scholar
  33. Jan Kratochvíl. String graphs I. The number of critical nonstring graphs is infinite. Journal of Combinatorial Theory, Series B, 52(1):53-66, 1991. Google Scholar
  34. Michael Krivelevich, Zeev Nutov, Mohammad R Salavatipour, Jacques Verstraete, and Raphael Yuster. Approximation algorithms and hardness results for cycle packing problems. ACM Transactions on Algorithms (TALG), 3(4):48-es, 2007. Google Scholar
  35. James R Lee. Separators in region intersection graphs. In Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), 2017. Google Scholar
  36. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. Subexponential parameterized algorithms on disk graphs. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages 2005-2031. SIAM, 2022. Google Scholar
  37. Jiří Matoušek. Near-optimal separators in string graphs. Combinatorics, Probability and Computing, 23(1):135-139, 2014. Google Scholar
  38. Jiří Matoušek. String graphs and separators. In Geometry, Structure and Randomness in Combinatorics, pages 61-97. Springer, 2014. Google Scholar
  39. Matthias Middendorf and Frank Pfeiffer. Weakly transitive orientations, Hasse diagrams and string graphs. Discrete Mathematics, 111(1-3):393-400, 1993. Google Scholar
  40. Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of the homomorphism problem in string graphs. Journal of Computer and System Sciences, 109:126-144, 2020. Google Scholar
  41. János Pach and Géza Tóth. Comment on fox news. Geombinatorics, 15:150-154, 2006. Google Scholar
  42. Alexandre Rok and Bartosz Walczak. Outerstring graphs are χ-bounded. SIAM Journal on Discrete Mathematics, 33(4):2181-2199, 2019. Google Scholar
  43. Marcus Schaefer and Daniel Štefankovič. Decidability of string graphs. Journal of Computer and System Sciences, 2(68):319-334, 2004. Google Scholar
  44. Frank W. Sinden. Topology of thin film RC circuits. Bell System Technical Journal, 45:1639-1662, 1966. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail