SubModST: A Fast Generic Solver for Submodular Maximization with Size Constraints

Authors Henning Martin Woydt , Christian Komusiewicz , Frank Sommer



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.102.pdf
  • Filesize: 1.24 MB
  • 18 pages

Document Identifiers

Author Details

Henning Martin Woydt
  • Heidelberg University, Germany
Christian Komusiewicz
  • Friedrich Schiller University Jena, Institute of Computer Science, Germany
Frank Sommer
  • Friedrich Schiller University Jena, Institute of Computer Science, Germany

Acknowledgements

The results of this work are based on the first author’s Masters thesis [Henning M. Woydt, 2023].

Cite AsGet BibTex

Henning Martin Woydt, Christian Komusiewicz, and Frank Sommer. SubModST: A Fast Generic Solver for Submodular Maximization with Size Constraints. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 102:1-102:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.102

Abstract

In the Cardinality-Constrained Maximization (Minimization) problem the input is a universe 𝒰, a function f: 2^{{𝒰}} → ℝ, and an integer k, and the task is to find a set S ⊆ 𝒰 with |S| ≤ k that maximizes (minimizes) f(S). Many well-studied problems such as Facility Location, Partial Dominating Set, Group Closeness Centrality and Euclidean k-Medoid Clustering are special cases of Cardinality-Constrained Maximization (Minimization). All the above-mentioned problems have the diminishing return property, that is, the improvement of adding an element e ∈ 𝒰 to a set S is at least as large as adding e to any superset of S. This property is called submodularity for maximization problems and supermodularity for minimization problems. In this work we develop a new exact branch-and-cut algorithm SubModST for the generic Submodular Cardinality-Constrained Maximization and Supermodular Cardinality-Constrained Minimization. We develop several speed-ups for SubModST and we show their effectiveness on six example problems. We show that SubModST outperforms the state-of-the-art solvers developed by Csókás and Vinkó [J. Glob. Optim. '24] and Uematsu et al. [J. Oper. Res. Soc. Japan '20] for Submodular Cardinality-Constrained Maximization by orders of magnitudes.

Subject Classification

ACM Subject Classification
  • Theory of computation → Design and analysis of algorithms
  • Theory of computation → Branch-and-bound
Keywords
  • Branch-and-Cut
  • Lazy Evaluations
  • Facility Location
  • Group Closeness Centrality
  • Partial Dominating Set

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Alexander A. Ageev and Maxim Sviridenko. Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts. In Integer Programming and Combinatorial Optimization, 7th International IPCO Conference, Graz, Austria, June 9-11, 1999, Proceedings, volume 1610 of Lecture Notes in Computer Science, pages 17-30. Springer, 1999. URL: https://doi.org/10.1007/3-540-48777-8_2.
  2. Paola Alimonti and Viggo Kann. Some APX-completeness results for cubic graphs. Theoretical Computer Science, 237(1-2):123-134, 2000. URL: https://doi.org/10.1016/S0304-3975(98)00158-3.
  3. Francis R. Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Foundations and Trends in Machine Learning, 6(2-3):145-373, 2013. URL: https://doi.org/10.1561/2200000039.
  4. Elisabetta Bergamini, Tanya Gonser, and Henning Meyerhenke. Scaling up group closeness maximization. In Rasmus Pagh and Suresh Venkatasubramanian, editors, Proceedings of the Twentieth Workshop on Algorithm Engineering and Experiments, ALENEX 2018, New Orleans, LA, USA, January 7-8, 2018, pages 209-222. SIAM, 2018. URL: https://doi.org/10.1137/1.9781611975055.18.
  5. Chen Chen, Wei Wang, and Xiaoyang Wang. Efficient Maximum Closeness Centrality Group Identification. In Databases Theory and Applications - 27th Australasian Database Conference, ADC 2016, Sydney, NSW, Australia, September 28-29, 2016, Proceedings, volume 9877 of Lecture Notes in Computer Science, pages 43-55. Springer, 2016. URL: https://doi.org/10.1007/978-3-319-46922-5_4.
  6. Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj, and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Information and Computation, 201(2):216-231, 2005. URL: https://doi.org/10.1016/j.ic.2005.05.001.
  7. Wenlin Chen, Yixin Chen, and Kilian Q. Weinberger. Filtered Search for Submodular Maximization with Controllable Approximation Bounds. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2015, San Diego, California, USA, May 9-12, 2015, volume 38 of JMLR Workshop and Conference Proceedings. JMLR.org, 2015. URL: http://proceedings.mlr.press/v38/chen15c.html.
  8. Fabián A. Chudak and David B. Shmoys. Improved Approximation Algorithms for the Uncapacitated Facility Location Problem. SIAM Journal on Computing, 33(1):1-25, 2003. URL: https://doi.org/10.1137/S0097539703405754.
  9. Gérard Cornuéjols, George Nemhauser, and Laurence Wolsey. The Uncapicitated Facility Location Problem. Technical report, Cornell University Operations Research and Industrial Engineering, 1983. Google Scholar
  10. Eszter Julianna Csókás and Tamás Vinkó. Constraint generation approaches for submodular function maximization leveraging graph properties. Journal of Global Optimization, 88(2):377-394, 2024. URL: https://doi.org/10.1007/s10898-023-01318-4.
  11. M. G. Everett and S. P. Borgatti. The Centrality of Groups and Classes. The Journal of Mathematical Sociology, 23(3):181-201, 1999. Google Scholar
  12. Pasi Fränti and Sami Sieranoja. k-means properties on six clustering benchmark datasets. Applied Intelligence, 48(12):4743-4759, 2018. URL: https://doi.org/10.1007/s10489-018-1238-7.
  13. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly Exponential Complexity? Journal of Computer and System Sciences, 63(4):512-530, 2001. URL: https://doi.org/10.1006/jcss.2001.1774.
  14. Richard M. Karp. Reducibility among Combinatorial Problems. In Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA, The IBM Research Symposia Series, pages 85-103. Plenum Press, New York, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  15. Leonard Kaufmann and Peter Rousseeuw. Clustering by Means of Medoids. Data Analysis based on the L1-Norm and Related Methods, pages 405-416, 1987. Google Scholar
  16. Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, and Jeff A. Bilmes. Submodularity Cuts and Applications. In Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada, pages 916-924. Curran Associates, Inc., 2009. URL: https://proceedings.neurips.cc/paper/2009/hash/9ad6aaed513b73148b7d49f70afcfb32-Abstract.html.
  17. Samir Khuller, Anna Moss, and Joseph Naor. The budgeted maximum coverage problem. Information Processing Letters, 70(1):39-45, 1999. URL: https://doi.org/10.1016/S0020-0190(99)00031-9.
  18. Andreas Krause and Daniel Golovin. Submodular Function Maximization. In Tractability: Practical Approaches to Hard Problems, pages 71-104. Cambridge University Press, 2014. URL: https://doi.org/10.1017/CBO9781139177801.004.
  19. Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. Journal of Machine Learning Research, 23:54:1-54:9, 2022. URL: http://jmlr.org/papers/v23/21-0888.html.
  20. Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In Optimization Techniques II, pages 234-243. Springer Berlin, Heidelberg, 1977. Google Scholar
  21. Thomas Moscibroda and Roger Wattenhofer. Maximizing the Lifetime of Dominating Sets. In 19th International Parallel and Distributed Processing Symposium (IPDPS 2005), CD-ROM / Abstracts Proceedings, 4-8 April 2005, Denver, CO, USA. IEEE Computer Society, 2005. URL: https://doi.org/10.1109/IPDPS.2005.276.
  22. George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approximations for maximizing submodular set functions - I. Mathematical Programming, 14(1):265-294, 1978. URL: https://doi.org/10.1007/BF01588971.
  23. G.L. Nemhauser and L.A. Wolsey. Maximizing Submodular Set Functions: Formulations and Analysis of Algorithms. In Annals of Discrete Mathematics (11), volume 59 of North-Holland Mathematics Studies, pages 279-301. North-Holland, 1981. Google Scholar
  24. Mohammad Rezaei and Pasi Fränti. Can the Number of Clusters Be Determined by External Indices? IEEE Access, 8:89239-89257, 2020. URL: https://doi.org/10.1109/ACCESS.2020.2993295.
  25. Ryan A. Rossi and Nesreen K. Ahmed. The Network Data Repository with Interactive Graph Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages 4292-4293. AAAI Press, 2015. URL: https://doi.org/10.1609/aaai.v29i1.9277.
  26. Ron Rymon. Search through Systematic Set Enumeration. In Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (KR'92). Cambridge, MA, USA, October 25-29, 1992, pages 539-550. Morgan Kaufmann, 1992. Google Scholar
  27. Chao Shen and Tao Li. Multi-Document Summarization via the Minimum Dominating Set. In COLING 2010, 23rd International Conference on Computational Linguistics, Proceedings of the Conference, 23-27 August 2010, Beijing, China, pages 984-992. Tsinghua University Press, 2010. URL: https://aclanthology.org/C10-1111/.
  28. Luca Pascal Staus, Christian Komusiewicz, Nils Morawietz, and Frank Sommer. Exact Algorithms for Group Closeness Centrality. In SIAM Conference on Applied and Computational Discrete Algorithms, ACDA 2023, Seattle, WA, USA, May 31 - June 2, 2023, pages 1-12. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977714.1.
  29. Ivan Stojmenovic, Mahtab Seddigh, and Jovisa D. Zunic. Dominating Sets and Neighbor Elimination-Based Broadcasting Algorithms in Wireless Networks. IEEE Transactions on Parallel and Distributed Systems, 13(1):14-25, 2002. URL: https://doi.org/10.1109/71.980024.
  30. Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. IEEE Transactions on Neural Networks, 19(2):376, 2008. URL: https://doi.org/10.1109/TNN.2008.929642.
  31. Naoya Uematsu, Shunji Umetani, and Yoshinobu Kawahara. An efficient branch-and-cut algorithm for submodular function maximization. Journal of the Operations Research Society of Japan, 63(2):41-59, 2020. URL: https://doi.org/10.48550/arXiv.1904.12682.
  32. Jan Vondrak. Submodularity and curvature: the optimal algorithm. RIMS Kôkyûroku Bessatsu, pages 253-266, 2010. Google Scholar
  33. Henning M. Woydt. Algorithm engineering for generic subset optimization problems. Master’s thesis, Friedrich-Schiller-Universität Jena, 2023. URL: https://doi.org/10.22032/dbt.61730.
  34. Jie Wu and Hailan Li. A Dominating-Set-Based Routing Scheme in Ad Hoc Wireless Networks. Telecommunication Systems, 18(1-3):13-36, 2001. URL: https://doi.org/10.1023/A:1016783217662.
  35. Yi-Zhi Xu and Hai-Jun Zhou. Generalized minimum dominating set and application in automatic text summarization. Computing Research Repository, abs/1602.04930, 2016. URL: https://doi.org/10.48550/arXiv.1602.04930.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail