Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds

Authors Cornelius Brand , Martin Koutecký , Alexandra Lassota , Sebastian Ordyniak



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.32.pdf
  • Filesize: 0.84 MB
  • 18 pages

Document Identifiers

Author Details

Cornelius Brand
  • Chair of Algorithms and Complexity Theory, Faculty for Informatics and Computer Science, University of Regensburg, Germany
Martin Koutecký
  • Computer Science Institute, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
Alexandra Lassota
  • Eindhoven University of Technology, The Netherlands
Sebastian Ordyniak
  • University of Leeds, UK

Cite AsGet BibTex

Cornelius Brand, Martin Koutecký, Alexandra Lassota, and Sebastian Ordyniak. Separable Convex Mixed-Integer Optimization: Improved Algorithms and Lower Bounds. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.32

Abstract

We provide several novel algorithms and lower bounds in central settings of mixed-integer (non-)linear optimization, shedding new light on classic results in the field. This includes an improvement on record running time bounds obtained from a slight extension of Lenstra’s 1983 algorithm [Math. Oper. Res. '83] to optimizing under few constraints with small coefficients. This is important for ubiquitous tasks like knapsack-, subset sum- or scheduling problems [Eisenbrand and Weismantel, SODA'18, Jansen and Rohwedder, ITCS'19]. Further, we extend our algorithm to an intermediate linear optimization problem when the matrix has many rows that exhibit 2-stage stochastic structure, which adds to a prominent line of recent results on this and similarly restricted cases [Jansen et al. ICALP'19, Cslovjecsek et al. SODA'21, Brand et al. AAAI'21, Klein, Reuter SODA'22, Cslovjecsek et al. SODA'24]. We also show that the generalization of two fundamental classes of structured constraints from these works (n-fold and 2-stage stochastic programs) to separable-convex mixed-integer optimization are harder than their mixed-integer, linear counterparts. This counters a widespread belief popularized initially by an influential paper of Hochbaum and Shanthikumar, namely that "convex separable optimization is not much harder than linear optimization" [J. ACM '90]. To obtain our algorithms, we employ the mixed Graver basis introduced by Hemmecke [Math. Prog. '03], and our work is the first to give bounds on the norm of its elements. Importantly, we use these bounds differently from how purely-integer Graver bounds are exploited in related approaches, and prove that, surprisingly, this cannot be avoided.

Subject Classification

ACM Subject Classification
  • Theory of computation → Convex optimization
Keywords
  • Mixed-Integer Programming
  • Separable Convex Optimization
  • Parameterized Algorithms
  • Parameterized Complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Matthias Aschenbrenner and Raymond Hemmecke. Finiteness theorems in stochastic integer programming. Foundations of Computational Mathematics, 7(2):183-227, 2007. Google Scholar
  2. Dimitris Bertsimas, Angela King, and Rahul Mazumder. Best subset selection via a modern optimization lens. The Annals of Statistics, 44(2):813-852, 2016. URL: http://www.jstor.org/stable/43818629.
  3. Robert E Bixby. Solving real-world linear programs: A decade and more of progress. Operations research, 50(1):3-15, 2002. Google Scholar
  4. Cornelius Brand, Martin Koutecký, and Sebastian Ordyniak. Parameterized algorithms for milps with small treedepth. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 12249-12257. AAAI Press, 2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/17454, URL: https://doi.org/10.1609/AAAI.V35I14.17454.
  5. Timothy F. N. Chan, Jacob W. Cooper, Martin Koutecký, Daniel Král, and Kristýna Pekárková. Matrices of optimal tree-depth and a row-invariant parameterized algorithm for integer programming. SIAM J. Comput., 51(3):664-700, 2022. URL: https://doi.org/10.1137/20M1353502.
  6. Sergei Chubanov. A polynomial-time descent method for separable convex optimization problems with linear constraints. SIAM J. Optim., 26(1):856-889, 2016. URL: https://doi.org/10.1137/14098524X.
  7. Michele Conforti, Marco Di Summa, Friedrich Eisenbrand, and Laurence A. Wolsey. Network formulations of mixed-integer programs. Math. Oper. Res., 34(1):194-209, 2009. URL: https://doi.org/10.1287/moor.1080.0354.
  8. Jana Cslovjecsek, Friedrich Eisenbrand, Christoph Hunkenschröder, Lars Rohwedder, and Robert Weismantel. Block-structured integer and linear programming in strongly polynomial and near linear time. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1666-1681. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.101.
  9. Jana Cslovjecsek, Friedrich Eisenbrand, Michal Pilipczuk, Moritz Venzin, and Robert Weismantel. Efficient sequential and parallel algorithms for multistage stochastic integer programming using proximity. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 33:1-33:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ESA.2021.33.
  10. Jana Cslovjecsek, Martin Koutecky, Alexandra Lassota, Michal Pilipczuk, and Adam Polak. Parameterized algorithms for block-structured integer programs with large entries. In Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7 - 10, 2024. SIAM, 2024. Google Scholar
  11. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness II: on completeness for W[1]. Theor. Comput. Sci., 141(1&2):109-131, 1995. Google Scholar
  12. Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf Levin, and Shmuel Onn. An algorithmic theory of integer programming. CoRR, abs/1904.01361, 2019. Google Scholar
  13. Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms for integer programming using the steinitz lemma. ACM Trans. Algorithms, 16(1):5:1-5:14, 2020. URL: https://doi.org/10.1145/3340322.
  14. Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combinatorial optimization, volume 2. Springer Science & Business Media, 2012. Google Scholar
  15. Raymond Hemmecke. On the positive sum property and the computation of graver test sets. Math. Program., 96(2):247-269, 2003. URL: https://doi.org/10.1007/s10107-003-0385-7.
  16. D. S. Hochbaum and J. G. Shantikumar. Convex separable optimization is not much harder than linear optimization. J. ACM, 37(4):843-862, 1990. Google Scholar
  17. A Hoffman. Integral boundary points of convex polyhedra. Linear Inequalities and Related Systems, pages 223-246, 1956. Google Scholar
  18. Klaus Jansen, Kim-Manuel Klein, and Alexandra Lassota. The double exponential runtime is tight for 2-stage stochastic ILPs. Math. Program., 197(2):1145-1172, 2023. URL: https://doi.org/10.1007/S10107-022-01837-0.
  19. Klaus Jansen and Lars Rohwedder. On integer programming, discrepancy, and convolution. Math. Oper. Res., 48(3):1481-1495, 2023. URL: https://doi.org/10.1287/MOOR.2022.1308.
  20. Kim-Manuel Klein and Janina Reuter. Collapsing the tower - on the complexity of multistage stochastic ips. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 348-358. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.17.
  21. Dusan Knop, Martin Koutecký, Asaf Levin, Matthias Mnich, and Shmuel Onn. High-multiplicity n-fold IP via configuration LP. Math. Program., 200(1):199-227, 2023. URL: https://doi.org/10.1007/S10107-022-01882-9.
  22. Martin Koutecký, Asaf Levin, and Shmuel Onn. A parameterized strongly polynomial algorithm for block structured integer programs. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107 of LIPIcs, pages 85:1-85:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. Google Scholar
  23. Hendrik W. Lenstra, Jr. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4):538-548, 1983. Google Scholar
  24. Joseph Paat, Robert Weismantel, and Stefan Weltge. Distances between optimal solutions of mixed-integer programs. Math. Program., 179(1):455-468, 2020. URL: https://doi.org/10.1007/s10107-018-1323-z.
  25. Sergey Sevast'janov and Wojciech Banaszczyk. To the Steinitz lemma in coordinate form. Discrete Math., 169(1-3):145-152, 1997. Google Scholar
  26. E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme. J. Reine Angew. Math., 146:1-52, 1916. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail