We consider an incremental variant of the rooted prize-collecting Steiner-tree problem with a growing budget constraint. While no incremental solution exists that simultaneously approximates the optimum for all budgets, we show that a bicriterial (α,μ)-approximation is possible, i.e., a solution that with budget B+α for all B ∈ ℝ_{≥ 0} is a multiplicative μ-approximation compared to the optimum solution with budget B. For the case that the underlying graph is a tree, we present a polynomial-time density-greedy algorithm that computes a (χ,1)-approximation, where χ denotes the eccentricity of the root vertex in the underlying graph, and show that this is best possible. An adaptation of the density-greedy algorithm for general graphs is (γ,2)-competitive where γ is the maximal length of a vertex-disjoint path starting in the root. While this algorithm does not run in polynomial time, it can be adapted to a (γ,3)-competitive algorithm that runs in polynomial time. We further devise a capacity-scaling algorithm that guarantees a (3χ,8)-approximation and, more generally, a ((4𝓁 - 1)χ, (2^{𝓁 + 2})/(2^𝓁 -1))-approximation for every fixed 𝓁 ∈ ℕ.
@InProceedings{disser_et_al:LIPIcs.ESA.2024.47, author = {Disser, Yann and Griesbach, Svenja M. and Klimm, Max and Lutz, Annette}, title = {{Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {47:1--47:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.47}, URN = {urn:nbn:de:0030-drops-211188}, doi = {10.4230/LIPIcs.ESA.2024.47}, annote = {Keywords: incremental optimization, competitive analysis, prize-collecting Steiner-tree} }
Feedback for Dagstuhl Publishing