Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem

Authors Yann Disser , Svenja M. Griesbach , Max Klimm , Annette Lutz



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.47.pdf
  • Filesize: 0.78 MB
  • 16 pages

Document Identifiers

Author Details

Yann Disser
  • Department of Mathematics, Technische Universität Darmstadt, Germany
Svenja M. Griesbach
  • Institute of Mathematics, Technische Universität Berlin, Germany
Max Klimm
  • Institute of Mathematics, Technische Universität Berlin, Germany
Annette Lutz
  • Department of Mathematics, Technische Universität Darmstadt, Germany

Acknowledgements

We thank Felix Hommelsheim, Alexander Lindermayr, and Jens Schlöter for fruitful discussions and three anonymous referees for their comments that improved the presentation of the paper.

Cite AsGet BibTex

Yann Disser, Svenja M. Griesbach, Max Klimm, and Annette Lutz. Bicriterial Approximation for the Incremental Prize-Collecting Steiner-Tree Problem. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.47

Abstract

We consider an incremental variant of the rooted prize-collecting Steiner-tree problem with a growing budget constraint. While no incremental solution exists that simultaneously approximates the optimum for all budgets, we show that a bicriterial (α,μ)-approximation is possible, i.e., a solution that with budget B+α for all B ∈ ℝ_{≥ 0} is a multiplicative μ-approximation compared to the optimum solution with budget B. For the case that the underlying graph is a tree, we present a polynomial-time density-greedy algorithm that computes a (χ,1)-approximation, where χ denotes the eccentricity of the root vertex in the underlying graph, and show that this is best possible. An adaptation of the density-greedy algorithm for general graphs is (γ,2)-competitive where γ is the maximal length of a vertex-disjoint path starting in the root. While this algorithm does not run in polynomial time, it can be adapted to a (γ,3)-competitive algorithm that runs in polynomial time. We further devise a capacity-scaling algorithm that guarantees a (3χ,8)-approximation and, more generally, a ((4𝓁 - 1)χ, (2^{𝓁 + 2})/(2^𝓁 -1))-approximation for every fixed 𝓁 ∈ ℕ.

Subject Classification

ACM Subject Classification
  • Theory of computation → Online algorithms
  • Mathematics of computing → Graph algorithms
  • Mathematics of computing → Combinatorial algorithms
  • Theory of computation → Graph algorithms analysis
Keywords
  • incremental optimization
  • competitive analysis
  • prize-collecting Steiner-tree

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm for the generalized Steiner problem on networks. SIAM J. Comput., 24(3):440-456, 1995. URL: https://doi.org/10.1137/S0097539792236237.
  2. Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi. 2-approximation for prize-collecting Steiner forest. In David P. Woodruff, editor, Proceedings of the 35th ACM-SIAM Symposium on Discrete Algorithms, (SODA), pages 669-693, 2024. URL: https://doi.org/10.1137/1.9781611977912.25.
  3. Ali Ahmadi, Iman Gholami, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Mohammad Mahdavi. Prize-collecting Steiner tree: A 1.79 approximation. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing (STOC), pages 1641-1652, 2024. URL: https://doi.org/10.1145/3618260.3649789.
  4. Steve Alpern and Thomas Lidbetter. Mining coal or finding terrorists: The expanding search paradigm. Oper. Res., 61(2):265-279, 2013. URL: https://doi.org/10.1287/OPRE.1120.1134.
  5. Aaron Archer, MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Howard J. Karloff. Improved approximation algorithms for prize-collecting Steiner tree and TSP. SIAM J. Comput., 40(2):309-332, 2011. URL: https://doi.org/10.1137/090771429.
  6. Sunil Arya and H. Ramesh. A 2.5-factor approximation algorithm for the k-MST problem. Inf. Process. Lett., 65(3):117-118, 1998. URL: https://doi.org/10.1016/S0020-0190(98)00010-6.
  7. Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621-636, 1989. URL: https://doi.org/10.1002/NET.3230190602.
  8. Aaron Bernstein, Yann Disser, Martin Groß, and Sandra Himburg. General bounds for incremental maximization. Math. Program., 191(2):953-979, 2022. URL: https://doi.org/10.1007/S10107-020-01576-0.
  9. Daniel Bienstock, Michel X. Goemans, David Simchi-Levi, and David P. Williamson. A note on the prize collecting traveling salesman problem. Math. Program., 59:413-420, 1993. URL: https://doi.org/10.1007/BF01581256.
  10. Avrim Blum, Prasad Chalasani, Don Coppersmith, William R. Pulleyblank, Prabhakar Raghavan, and Madhu Sudan. The minimum latency problem. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC), pages 163-171, 1994. URL: https://doi.org/10.1145/195058.195125.
  11. Avrim Blum, R. Ravi, and Santosh S. Vempala. A constant-factor approximation algorithm for the k-MST problem. J. Comput. Syst. Sci., 58(1):101-108, 1999. URL: https://doi.org/10.1006/JCSS.1997.1542.
  12. Costas Busch, Da Qi Chen, Arnold Filtser, Daniel Hathcock, D. Ellis Hershkowitz, and Rajmohan Rajaraman. One tree to rule them all: Poly-logarithmic universal Steiner tree. In Proceedings of the 64th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pages 60-76, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00012.
  13. Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approximation via iterative randomized rounding. J. ACM, 60(1):6:1-6:33, 2013. URL: https://doi.org/10.1145/2432622.2432628.
  14. Miroslav Chlebík and Janka Chlebíková. The Steiner tree problem on graphs: Inapproximability results. Theor. Comput. Sci., 406(3):207-214, 2008. URL: https://doi.org/10.1016/J.TCS.2008.06.046.
  15. Yann Disser, Svenja M Griesbach, Max Klimm, and Annette Lutz. Bicriterial approximation for the incremental prize-collecting steiner-tree problem. arXiv preprint, 2024. URL: https://arxiv.org/abs/2407.04447.
  16. Yann Disser, Max Klimm, Annette Lutz, and David Weckbecker. Fractionally subadditive maximization under an incremental knapsack constraint with applications to incremental flows. SIAM J. on Discret. Math., 8:764-789, 2024. URL: https://doi.org/10.1137/23M156926.
  17. Yann Disser, Max Klimm, Kevin Schewior, and David Weckbecker. Incremental maximization via continuization. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, Proceedings of the 50th International Colloquium on Automata, Languages, and Programming (ICALP), pages 47:1-47:17, 2023. URL: https://doi.org/10.4230/LIPICS.ICALP.2023.47.
  18. Joan Feigenbaum, Christos H. Papadimitriou, and Scott Shenker. Sharing the cost of multicast transmissions. J. Comput. Syst. Sci., 63(1):21-41, 2001. URL: https://doi.org/10.1006/JCSS.2001.1754.
  19. Naveen Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS), pages 302-309, 1996. URL: https://doi.org/10.1109/SFCS.1996.548489.
  20. Naveen Garg. Saving an epsilon: A 2-approximation for the k-MST problem in graphs. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages 396-402, 2005. URL: https://doi.org/10.1145/1060590.1060650.
  21. Rohan Ghuge and Viswanath Nagarajan. Quasi-polynomial algorithms for submodular tree orienteering and directed network design problems. Math. Oper. Res., 47(2):1612-1630, 2022. URL: https://doi.org/10.1287/MOOR.2021.1181.
  22. Michel X. Goemans and Jon M. Kleinberg. An improved approximation ratio for the minimum latency problem. Math. Program., 82:111-124, 1998. URL: https://doi.org/10.1007/BF01585867.
  23. Michel X. Goemans and David P. Williamson. A general approximation technique for constrained forest problems. SIAM J. Comput., 24(2):296-317, 1995. URL: https://doi.org/10.1137/S0097539793242618.
  24. Svenja M. Griesbach, Felix Hommelsheim, Max Klimm, and Kevin Schewior. Improved approximation algorithms for the expanding search problem. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, Proceedings of the 31st Annual European Symposium on Algorithms (ESA), pages 54:1-54:15, 2023. URL: https://doi.org/10.4230/LIPICS.ESA.2023.54.
  25. Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: Maintaining a constant-competitive Steiner tree online. SIAM J. Comput., 45(1):1-28, 2016. URL: https://doi.org/10.1137/140955276.
  26. Anupam Gupta and Amit Kumar. Online Steiner tree with deletions. In Chandra Chekuri, editor, Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 455-467, 2014. URL: https://doi.org/10.1137/1.9781611973402.34.
  27. Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized Steiner tree problem via a new approach of primal-dual schema. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 631-640, 2006. Google Scholar
  28. Ben Hermans, Roel Leus, and Jannik Matuschke. Exact and approximation algorithms for the expanding search problem. INFORMS J. Comput., 34(1):281-296, 2022. URL: https://doi.org/10.1287/IJOC.2020.1047.
  29. Stefan Hougardy and Hans Jürgen Prömel. A 1.598 approximation algorithm for the Steiner problem in graphs. In Robert Endre Tarjan and Tandy J. Warnow, editors, Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1999. Google Scholar
  30. Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem. SIAM J. Discret. Math., 4(3):369-384, 1991. URL: https://doi.org/10.1137/0404033.
  31. Lujun Jia, Guolong Lin, Guevara Noubir, Rajmohan Rajaraman, and Ravi Sundaram. Universal approximations for TSP, Steiner tree, and set cover. In Harold N. Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC), pages 386-395, 2005. URL: https://doi.org/10.1145/1060590.1060649.
  32. David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting Steiner tree problem: theory and practice. In David B. Shmoys, editor, Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 760-769, 2000. Google Scholar
  33. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and James W. Thatcher, editors, Proceedings of a Symposium on the Complexity of Computer Computations, pages 85-103, 1972. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  34. Hoong Chuin Lau, Trung Hieu Ngo, and Bao Nguyen Nguyen. Finding a length-constrained maximum-sum or maximum-density subtree and its application to logistics. Discret. Optim., 3(4):385-391, 2006. URL: https://doi.org/10.1016/J.DISOPT.2006.06.002.
  35. Asaf Levin. A better approximation algorithm for the budget prize collecting tree problem. Oper. Res. Lett., 32(4):316-319, 2004. URL: https://doi.org/10.1016/J.ORL.2003.11.002.
  36. Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson. A general approach for incremental approximation and hierarchical clustering. SIAM J. Comput., 39(8):3633-3669, 2010. URL: https://doi.org/10.1137/070698257.
  37. Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted Steiner tree and related problems. In Rafail Ostrovsky, editor, Proceedings of the IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pages 210-219, 2011. URL: https://doi.org/10.1109/FOCS.2011.65.
  38. Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, and David P. Williamson. Erratum to "Budgeted prize-collecting traveling salesman and minimum spanning tree problems"'. Math. Oper. Res., 48(4):2304-2307, 2023. URL: https://doi.org/10.1287/moor.2022.1340.
  39. Alice Paul, Daniel Freund, Aaron M. Ferber, David B. Shmoys, and David P. Williamson. Budgeted prize-collecting traveling salesman and minimum spanning tree problems. Math. Oper. Res., 45(2):576-590, 2020. URL: https://doi.org/10.1287/MOOR.2019.1002.
  40. Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM J. Discret. Math., 19(1):122-134, 2005. URL: https://doi.org/10.1137/S0895480101393155.
  41. F. Sibel Salman, Joseph Cheriyan, R. Ravi, and S. Subramanian. Approximating the single-sink link-installation problem in network design. SIAM J. Optim., 11(3):595-610, 2001. URL: https://doi.org/10.1137/S1052623497321432.
  42. Yogeshwer Sharma, Chaitanya Swamy, and David P. Williamson. Approximation algorithms for prize collecting forest problems with submodular penalty functions. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1275-1284, 2007. Google Scholar
  43. David Weckbecker. Competitive Analysis for Incremental Maximization. PhD thesis, TU Darmstadt, 2023. Google Scholar
  44. Chenyang Xu and Benjamin Moseley. Learning-augmented algorithms for online Steiner tree. In Proceedings of the 36th Conference on Artificial Intelligence (AAAI), pages 8744-8752, 2022. URL: https://doi.org/10.1609/AAAI.V36I8.20854.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail