Fractional Linear Matroid Matching Is in Quasi-NC

Authors Rohit Gurjar, Taihei Oki , Roshan Raj



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.63.pdf
  • Filesize: 0.73 MB
  • 14 pages

Document Identifiers

Author Details

Rohit Gurjar
  • Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India
Taihei Oki
  • Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Japan
Roshan Raj
  • Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Mumbai, India

Cite AsGet BibTex

Rohit Gurjar, Taihei Oki, and Roshan Raj. Fractional Linear Matroid Matching Is in Quasi-NC. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 63:1-63:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.63

Abstract

The matching and linear matroid intersection problems are solvable in quasi-NC, meaning that there exist deterministic algorithms that run in polylogarithmic time and use quasi-polynomially many parallel processors. However, such a parallel algorithm is unknown for linear matroid matching, which generalizes both of these problems. In this work, we propose a quasi-NC algorithm for fractional linear matroid matching, which is a relaxation of linear matroid matching and commonly generalizes fractional matching and linear matroid intersection. Our algorithm builds upon the connection of fractional matroid matching to non-commutative Edmonds' problem recently revealed by Oki and Soma (2023). As a corollary, we also solve black-box non-commutative Edmonds' problem with rank-two skew-symmetric coefficients.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parallel algorithms
  • Theory of computation → Algebraic complexity theory
Keywords
  • parallel algorithms
  • hitting set
  • non-commutative rank
  • Brascamp-Lieb polytope
  • algebraic algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. A. Amitsur. Rational identities and applications to algebra and geometry. Journal of Algebra, 3(3):304-359, 1966. URL: https://doi.org/10.1016/0021-8693(66)90004-4.
  2. V. Arvind, A. Chatterjee, and P. Mukhopadhyay. Black-Box Identity Testing of Noncommutative Rational Formulas in Deterministic Quasipolynomial Time, 2023. URL: https://arxiv.org/abs/2309.15647.
  3. J. Bennett, A. Carbery, M. Christ, and T. Tao. The Brascamp-Lieb inequalities: finiteness, structure and extremals. Geometric and Functional Analysis, 17(5):1343-1415, 2008. URL: https://doi.org/10.1007/s00039-007-0619-6.
  4. A. Borodin, S. Cook, and N. Pippenger. Parallel computation for well-endowed rings and space-bounded probabilistic machines. Information and Control, 58(1):113-136, 1983. URL: https://doi.org/10.1016/S0019-9958(83)80060-6.
  5. Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In Proceedings of the 59th Annual Symposium on Foundations of Computer Science (FOCS '18), pages 883-897. IEEE, 2018. URL: https://doi.org/10.1109/FOCS.2018.00088.
  6. S.-Y. Chang, D. C. Llewellyn, and J. H. Vande Vate. Matching 2-lattice polyhedra: finding a maximum vector. Discrete Mathematics, 237(1-3):29-61, 2001. URL: https://doi.org/10.1016/S0012-365X(00)00219-3.
  7. S.-Y. Chang, D. C. Llewellyn, and J. H. Vande Vate. Two-lattice polyhedra: duality and extreme points. Discrete Mathematics, 237(1-3):63-95, 2001. URL: https://doi.org/10.1016/S0012-365X(00)00220-X.
  8. H. Derksen and V. Makam. Polynomial degree bounds for matrix semi-invariants. Advances in Mathematics, 310:44-63, 2017. URL: https://doi.org/10.1016/j.aim.2017.01.018.
  9. S. A. Fenner, R. Gurjar, and T. Thierauf. Bipartite perfect matching is in quasi-NC. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC '16), pages 754-763. ACM, 2016. Google Scholar
  10. Cole Franks, Tasuku Soma, and Michel X Goemans. Shrunk subspaces via operator sinkhorn iteration. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '23), Proceedings, pages 1655-1668. Society for Industrial and Applied Mathematics, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch62.
  11. A. Garg, L. Gurvits, R. Oliveira, and A. Wigderson. Algorithmic and optimization aspects of Brascamp-Lieb inequalities, via operator scaling. Geometric and Functional Analysis, 28(1):100-145, 2018. URL: https://doi.org/10.1007/s00039-018-0434-2.
  12. A. Garg, L. Gurvits, R. M. Oliveira, and A. Wigderson. A deterministic polynomial time algorithm for non-commutative rational identity testing. In I. Dinur, editor, Proceedings of the 57th Annual Symposium on Foundations of Computer Science (FOCS '16), pages 109-117. IEEE, 2016. URL: https://doi.org/10.1109/FOCS.2016.95.
  13. A. Garg, L. Gurvits, R. M. Oliveira, and A. Wigderson. Operator scaling: Theory and applications. Foundations of Computational Mathematics, 20(2):223-290, 2020. URL: https://doi.org/10.1007/S10208-019-09417-Z.
  14. D. Gijswijt and G. Pap. An algorithm for weighted fractional matroid matching. Journal of Combinatorial Theory. Series B, 103(4):509-520, 2013. URL: https://doi.org/10.1016/j.jctb.2013.05.004.
  15. R. Gurjar and T. Thierauf. Linear matroid intersection is in quasi-NC. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing (STOC '17), pages 821-830. ACM, 2017. Google Scholar
  16. R. Gurjar, T. Thierauf, and N. K. Vishnoi. Isolating a vertex via lattices: polytopes with totally unimodular faces. SIAM Journal of Computing, 50(2):636-661, 2021. URL: https://doi.org/10.1137/19M1290802.
  17. Rohit Gurjar, Taihei Oki, and Roshan Raj. Fractional linear matroid matching is in quasi-nc, 2024. URL: https://arxiv.org/abs/2402.18276.
  18. M. Hamada and H. Hirai. Computing the nc-rank via discrete convex optimization on CAT(0) spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):455-478, 2021. URL: https://doi.org/10.1137/20M138836X.
  19. H. Hirai, Y. Iwamasa, T. Oki, and T. Soma. Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices, 2023. URL: https://arxiv.org/abs/2310.15502.
  20. P. Hrubes and A. Wigderson. Non-commutative arithmetic circuits with division. Theory of Computing, 11:357-393, 2015. URL: https://doi.org/10.4086/TOC.2015.V011A014.
  21. G. Ivanyos, Y. Qiao, and K. V. Subrahmanyam. Constructive non-commutative rank computation is in deterministic polynomial time. Computational Complexity, 27(4):561-593, 2018. URL: https://doi.org/10.1007/S00037-018-0165-7.
  22. R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random NC. Combinatorica, 6(1):35-48, 1986. Google Scholar
  23. L. Lovász. On determinants, matchings, and random algorithms. In L. Budach, editor, Fundamentals of Computation Theory. Akademie-Verlag, Berlin, 1979. Google Scholar
  24. K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7:105-113, 1987. Google Scholar
  25. H. Narayanan, H. Saran, and V. V. Vazirani. Randomized parallel algorithms for matroid union and intersection, with applications to arboresences and edge-disjoint spanning trees. SIAM Journal of Computing, 23(2):387-397, 1994. URL: https://doi.org/10.1137/S0097539791195245.
  26. T. Oki and T. Soma. Algebraic algorithms for fractional linear matroid parity via non-commutative rank. In Proceedings of the 34th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '23), pages 4188-4204. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch161.
  27. O. Svensson and J. Tarnawski. The matching problem in general graphs is in quasi-NC. In Proceedings of the 58th IEEE Annual Symposium on Foundations of Computer Science (FOCS '17), pages 696-707. IEEE, 2017. URL: https://doi.org/10.1109/FOCS.2017.70.
  28. O. Svensson and J. Tarnawski. The Matching Problem in General Graphs is in Quasi-NC, 2017. URL: https://arxiv.org/abs/1704.01929.
  29. W. T. Tutte. The factorization of linear graphs. Journal of the London Mathematical Society, s1-22(2):107-111, April 1947. URL: https://doi.org/10.1112/jlms/s1-22.2.107.
  30. J. H Vande Vate. Fractional matroid matchings. Journal of Combinatorial Theory. Series B, 55(1):133-145, 1992. URL: https://doi.org/10.1016/0095-8956(92)90037-X.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail