Finding a Maximum Restricted t-Matching via Boolean Edge-CSP

Authors Yuni Iwamasa , Yusuke Kobayashi , Kenjiro Takazawa



PDF
Thumbnail PDF

File

LIPIcs.ESA.2024.75.pdf
  • Filesize: 0.78 MB
  • 15 pages

Document Identifiers

Author Details

Yuni Iwamasa
  • Kyoto University, Japan
Yusuke Kobayashi
  • Kyoto University, Japan
Kenjiro Takazawa
  • Hosei University, Japan

Acknowledgements

The authors thank anonymous reviewers for their valuable comments.

Cite AsGet BibTex

Yuni Iwamasa, Yusuke Kobayashi, and Kenjiro Takazawa. Finding a Maximum Restricted t-Matching via Boolean Edge-CSP. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 75:1-75:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.ESA.2024.75

Abstract

The problem of finding a maximum 2-matching without short cycles has received significant attention due to its relevance to the Hamilton cycle problem. This problem is generalized to finding a maximum t-matching which excludes specified complete t-partite subgraphs, where t is a fixed positive integer. The polynomial solvability of this generalized problem remains an open question. In this paper, we present polynomial-time algorithms for the following two cases of this problem: in the first case the forbidden complete t-partite subgraphs are edge-disjoint; and in the second case the maximum degree of the input graph is at most 2t-1. Our result for the first case extends the previous work of Nam (1994) showing the polynomial solvability of the problem of finding a maximum 2-matching without cycles of length four, where the cycles of length four are vertex-disjoint. The second result expands upon the works of Bérczi and Végh (2010) and Kobayashi and Yin (2012), which focused on graphs with maximum degree at most t+1. Our algorithms are obtained from exploiting the discrete structure of restricted t-matchings and employing an algorithm for the Boolean edge-CSP.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorial optimization
  • Theory of computation → Discrete optimization
Keywords
  • Polynomial algorithm
  • C_k-free 2-matching
  • Jump system
  • Boolean edge-CSP

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kazutoshi Ando, Satoru Fujishige, and Takeshi Naitoh. A greedy algorithm for minimizing a separable convex function over a finite jump system. Journal of the Operations Research Society of Japan, 38(3):362-375, 1995. URL: https://doi.org/10.15807/jorsj.38.362.
  2. Maxim A. Babenko. Improved algorithms for even factors and square-free simple b-matchings. Algorithmica, 64:362-383, 2012. URL: https://doi.org/10.1007/s00453-012-9642-6.
  3. Kristóf Bérczi and Yusuke Kobayashi. An algorithm for (n-3)-connectivity augmentation problem: Jump system approach. Journal of Combinatorial Theory, Series B, 102:565-587, 2012. URL: https://doi.org/10.1016/j.jctb.2011.08.007.
  4. Kristóf Bérczi and László A. Végh. Restricted b-matchings in degree-bounded graphs. In F. Eisenbrand and B. Shepherd, editors, Integer Programming and Combinatorial Optimization: Proceedings of the 14th IPCO, LNCS 6080, pages 43-56. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-13036-6_4.
  5. André Bouchet and William H. Cunningham. Delta-matroids, jump systems, and bisubmodular polyhedra. SIAM Journal on Discrete Mathematics, 8:17-32, 1995. URL: https://doi.org/10.1137/S0895480191222926.
  6. Gérard Cornuéjols and William Pulleyblank. A matching problem with side conditions. Discrete Mathematics, 29:135-159, 1980. URL: https://doi.org/10.1016/0012-365X(80)90002-3.
  7. András Frank. Restricted t-matchings in bipartite graphs. Discrete Applied Mathematics, 131:337-346, 2003. URL: https://doi.org/10.1016/S0166-218X(02)00461-4.
  8. David Hartvigsen. Extensions of Matching Theory. PhD thesis, Carnegie Mellon University, 1984. Google Scholar
  9. David Hartvigsen. Finding maximum square-free 2-matchings in bipartite graphs. Journal of Combinatorial Theory, Series B, 96:693-705, 2006. URL: https://doi.org/10.1016/j.jctb.2006.01.004.
  10. David Hartvigsen. Finding triangle-free 2-factors in general graphs. Journal of Graph Theory, available online, 2024. URL: https://doi.org/10.1002/jgt.23089.
  11. David Hartvigsen and Yanjun Li. Maximum cardinality simple 2-matchings in subcubic graphs. SIAM Journal on Optimization, 21:1027-1045, 2011. URL: https://doi.org/10.1137/090760416.
  12. Alexandr Kazda, Vladimir Kolmogorov, and Michal Rolínek. Even delta-matroids and the complexity of planar boolean CSPs. ACM Transactions on Algorithms, 15(2):22:1-22:33, 2019. URL: https://doi.org/10.1145/3230649.
  13. Zoltán Király. C₄-free 2-factors in bipartite graphs. Technical Report TR-2001-13, Egerváry Research Group, 1999. www.cs.elte.hu/egres. Google Scholar
  14. Zoltán Király. Restricted t-matchings in bipartite graphs. Technical Report QP-2009-04, Egerváry Research Group, 2009. www.cs.elte.hu/egres. Google Scholar
  15. Yusuke Kobayashi, Kazuo Murota, and Ken'ichiro Tanaka. Operations on M-convex functions on jump systems. SIAM Journal on Discrete Mathematics, 21(1):107-129, 2007. URL: https://doi.org/10.1137/060652841.
  16. Yusuke Kobayashi and Takashi Noguchi. An approximation algorithm for two-edge-connected subgraph problem via triangle-free two-edge-cover. In Satoru Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages 49:1-49:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.ISAAC.2023.49.
  17. Yusuke Kobayashi, Jaćint Szabó, and Kenjiro Takazawa. A proof of Cunningham’s conjecture on restricted subgraphs and jump systems. Journal of Combinatorial Theory, Series B, 102:948-966, 2012. URL: https://doi.org/10.1016/J.JCTB.2012.03.003.
  18. Yusuke Kobayashi and Xin Yin. An algorithm for finding a maximum t-matching excluding complete partite subgraphs. Discrete Optimization, 9:98-108, 2012. URL: https://doi.org/10.1016/J.DISOPT.2012.02.003.
  19. László Lovász. The membership problem in jump systems. Journal of Combinatorial Theory, Series B, 70(1):45-66, 1997. URL: https://doi.org/10.1006/jctb.1997.1744.
  20. Kazuo Murota. M-convex functions on jump systems: A general framework for minsquare graph factor problem. SIAM Journal on Discrete Mathematics, 20(1):213-226, 2006. URL: https://doi.org/10.1137/040618710.
  21. Kazuo Murota. On basic operations related to network induction of discrete convex functions. Optimization Methods and Software, 36(2-3):519-559, 2021. URL: https://doi.org/10.1080/10556788.2020.1818080.
  22. Yunsun Nam. Matching Theory: Subgraphs with Degree Constraints and Other Properties. PhD thesis, University of British Columbia, 1994. Google Scholar
  23. Katarzyna Paluch and Mateusz Wasylkiewicz. A simple combinatorial algorithm for restricted 2-matchings in subcubic graphs - via half-edges. Information Processing Letters, 171:106146, 2021. URL: https://doi.org/10.1016/j.ipl.2021.106146.
  24. Gyula Pap. Combinatorial algorithms for matchings, even factors and square-free 2-factors. Mathematical Programming, 110:57-69, 2007. URL: https://doi.org/10.1007/s10107-006-0053-9.
  25. Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier, 2006. Google Scholar
  26. Akiyoshi Shioura and Ken'ichiro Tanaka. Polynomial-time algorithms for linear and convex optimization on jump systems. SIAM Journal on Discrete Mathematics, 21(2):504-522, 2007. URL: https://doi.org/10.1137/060656899.
  27. Kenjiro Takazawa. A weighted K_t,t-free t-factor algorithm for bipartite graphs. Mathematics of Operations Research, 34:351-362, 2009. URL: https://doi.org/doi.org/10.1287/moor.1080.0365.
  28. Kenjiro Takazawa. Decomposition theorems for square-free 2-matchings in bipartite graphs. Discrete Applied Mathematics, 233:215-223, 2017. URL: https://doi.org/10.1016/j.dam.2017.07.035.
  29. Kenjiro Takazawa. Finding a maximum 2-matching excluding prescribed cycles in bipartite graphs. Discrete Optimization, 26:26-40, 2017. URL: https://doi.org/10.1016/j.disopt.2017.05.003.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail