LIPIcs.ESA.2024.90.pdf
- Filesize: 2 MB
- 15 pages
Integration of spatial data is a major field of research. An important task of data integration is finding correspondences between entities. Here, we focus on combining building footprint data from cadastre and from volunteered geographic information, in particular OpenStreetMap. Previous research on this topic has led to exact 1:1 matching approaches and heuristic m:n matching approaches, most of which are lacking a mathematical problem definition. We introduce a model for many-to-many polygon matching based on the well-established Jaccard index. This is a natural extension to the existing 1:1 matching approaches. We show that the problem is NP-complete and a naive approach via integer programming fails easily. By analyzing the structure of the problem in detail, we can reduce the number of variables significantly. This approach yields an optimal m:n matching even for large real-world instances with appropriate running time. In particular, for the set of all building footprints of the city of Bonn (119,300 / 97,284 polygons) it yielded an optimal solution in approximately 1 hour.
Feedback for Dagstuhl Publishing