The classical comparison-based sorting problem asks us to find the underlying total ordering of a given set of elements, where we can only access the elements via comparisons. In this paper, we study a restricted version, where, as a hint, a set T of possible total orderings is given, usually in some compressed form. Recently, an algorithm called topological heapsort with optimal running time was found for case where T is the set of topological orderings of a given directed acyclic graph, or, equivalently, T is the set of linear extensions of a partial ordering [Haeupler et al. 2024]. We show that a simple generalization of topological heapsort is applicable to a much broader class of restricted sorting problems, where T corresponds to a given antimatroid. As a consequence, we obtain optimal algorithms for the following restricted sorting problems, where the allowed total orders are … - … restricted by a given set of monotone precedence formulas; - … the perfect elimination orders of a given chordal graph; or - … the possible vertex search orders of a given connected rooted graph.
@InProceedings{berendsohn:LIPIcs.ESA.2025.104, author = {Berendsohn, Benjamin Aram}, title = {{Optimal Antimatroid Sorting}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {104:1--104:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.104}, URN = {urn:nbn:de:0030-drops-245735}, doi = {10.4230/LIPIcs.ESA.2025.104}, annote = {Keywords: sorting, working-set heap, greedy, antimatroid} }
Feedback for Dagstuhl Publishing