The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings. - Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21]. - Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive Õ(n² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges.
@InProceedings{fischer_et_al:LIPIcs.ESA.2025.111, author = {Fischer, Nick and Goldenberg, Elazar and Habib, Mursalin and Karthik C. S.}, title = {{Hardness of Median and Center in the Ulam Metric}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {111:1--111:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.111}, URN = {urn:nbn:de:0030-drops-245809}, doi = {10.4230/LIPIcs.ESA.2025.111}, annote = {Keywords: Ulam distance, median, center, rank aggregation, fine-grained complexity} }
Feedback for Dagstuhl Publishing