In the graph stream model of computation, an algorithm processes the edges of an n-vertex input graph in one or more sequential passes while using a memory that is sublinear in the input size. The streaming model poses significant challenges for algorithmically constructing long paths. Many known algorithms that are tasked with extending an existing path as a subroutine require an entire pass over the input to add a single additional edge. This raises a fundamental question: Are multiple passes inherently necessary to construct paths of non-trivial lengths, or can a single pass suffice? To address this question, we systematically study the Longest Path problem in the one-pass streaming model. In this problem, given a desired approximation factor α, the objective is to compute a path of length at least lp(G)/α, where lp(G) is the length of a longest path in the input graph G. We study the problem in the insertion-only and the insertion-deletion streaming models, and we give algorithms as well as space lower bounds for both undirected and directed graphs. Our results are: 1) We show that for undirected graphs, in both the insertion-only and the insertion-deletion models, there are semi-streaming algorithms, i.e., algorithms that use space O(n poly log n), that compute a path of length at least d/3 with high probability, where d is the average degree of the input graph. These algorithms can also yield an α-approximation to Longest Path using space Õ(n²/α). 2) Next, we show that such a result cannot be achieved for directed graphs, even in the insertion-only model. We show that computing a (n^{1-o(1)})-approximation to Longest Path in directed graphs in the insertion-only model requires space Ω(n²). This result is in line with recent results that demonstrate that processing directed graphs is often significantly harder than undirected graphs in the streaming model. 3) We further complement our results with two additional lower bounds. First, we show that semi-streaming space is insufficient for small constant factor approximations to Longest Path for undirected graphs in the insertion-only model. Last, in undirected graphs in the insertion-deletion model, we show that computing an α-approximation requires space Ω(n²/α³).
@InProceedings{konrad_et_al:LIPIcs.ESA.2025.22, author = {Konrad, Christian and Trehan, Chhaya}, title = {{Constructing Long Paths in Graph Streams}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {22:1--22:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.22}, URN = {urn:nbn:de:0030-drops-244902}, doi = {10.4230/LIPIcs.ESA.2025.22}, annote = {Keywords: Longest Path Problem, Streaming Algorithms, One-way Two-party Communication Complexity} }
Feedback for Dagstuhl Publishing