A non-trivial minimum cut (NMC) sparsifier is a multigraph Ĝ that preserves all non-trivial minimum cuts of a given undirected graph G. We introduce a flexible data structure for fully dynamic graphs that can efficiently provide an NMC sparsifier upon request at any point during the sequence of updates. We employ simple dynamic forest data structures to achieve a fast from-scratch construction of the sparsifier at query time. Based on the strength of the adversary and desired type of time bounds, the data structure comes with different guarantees. Specifically, let G be a fully dynamic simple graph with n vertices and minimum degree δ. Then our data structure supports an insertion/deletion of an edge to/from G in n^o(1) worst-case time. Furthermore, upon request, it can return w.h.p. an NMC sparsifier of G that has O(n/δ) vertices and O(n) edges, in Ô(n) time. The probabilistic guarantees hold against an adaptive adversary. Alternatively, the update and query times can be improved to Õ(1) and Õ(n) respectively, if amortized-time guarantees are sufficient, or if the adversary is oblivious. Throughout the paper, we use Õ to hide polylogarithmic factors and Ô to hide subpolynomial (i.e., n^o(1)) factors. We discuss two applications of our new data structure. First, it can be used to efficiently report a cactus representation of all minimum cuts of a fully dynamic simple graph. Building this cactus for the NMC sparsifier instead of the original graph allows for a construction time that is sublinear in the number of edges. Against an adaptive adversary, we can with high probability output the cactus representation in worst-case Ô(n) time. Second, our data structure allows us to efficiently compute the maximal k-edge-connected subgraphs of undirected simple graphs, by repeatedly applying a minimum cut algorithm on the NMC sparsifier. Specifically, we can compute with high probability the maximal k-edge-connected subgraphs of a simple graph with n vertices and m edges in Õ(m+n²/k) time. This improves the best known time bounds for k = Ω(n^{1/8}) and naturally extends to the case of fully dynamic graphs.
@InProceedings{henzinger_et_al:LIPIcs.ESA.2025.36, author = {Henzinger, Monika and Kosinas, Evangelos and M\"{u}nk, Robin and R\"{a}cke, Harald}, title = {{Efficient Contractions of Dynamic Graphs - With Applications}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {36:1--36:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.36}, URN = {urn:nbn:de:0030-drops-245047}, doi = {10.4230/LIPIcs.ESA.2025.36}, annote = {Keywords: Graph Algorithms, Cut Sparsifiers, Dynamic Algorithms} }
Feedback for Dagstuhl Publishing