Let G be a directed graph on n vertices and m edges. In this article, we study (s,t)-cuts of second minimum capacity and present the following algorithmic and graph-theoretic results. 1) Second (s,t)-mincut: Vazirani and Yannakakis [ICALP 1992] designed the first algorithm for computing an (s,t)-cut of second minimum capacity using {O}(n²) maximum (s,t)-flow computations. We present the following algorithm that improves the running time significantly. For directed integer-weighted graphs, there is an algorithm that can compute an (s,t)-cut of second minimum capacity using Õ(√n) maximum (s,t)-flow computations with high probability. To achieve this result, a close relationship of independent interest is established between (s,t)-cuts of second minimum capacity and global mincuts in directed weighted graphs. 2) Minimum+1 (s,t)-cuts: Minimum+1 (s,t)-cuts have been studied quite well recently [Baswana, Bhanja, and Pandey, ICALP 2022 & TALG 2023], which is a special case of second (s,t)-mincut. We present the following structural result and the first nontrivial algorithm for minimum+1 (s,t)-cuts. 3) Algorithm: For directed multi-graphs, we design an algorithm that, given any maximum (s,t)-flow, computes a minimum+1 (s,t)-cut, if it exists, in O(m) time. 4) Structure: The existing structures for storing and characterizing all minimum+1 (s,t)-cuts occupy {O}(mn) space [Baswana, Bhanja, and Pandey, TALG 2023]. For undirected multi-graphs, we design a directed acyclic graph (DAG) occupying only {O}(m) space that stores and characterizes all minimum+1 (s,t)-cuts. This matches the space bound of the widely-known DAG structure for all (s,t)-mincuts [Picard and Queyranne, Math. Prog. Studies 1980]. 5) Dual Edge Sensitivity Oracle: The study of minimum+1 (s,t)-cuts often turns out to be useful in designing dual edge sensitivity oracles - a compact data structure for efficiently reporting an (s,t)-mincut after insertion/failure of any given pair of query edges. It has been shown recently [Bhanja, ICALP 2025] that any dual edge sensitivity oracle for (s,t)-mincut in undirected multi-graphs must occupy Ω(n²) space in the worst-case irrespective of the query time. Interestingly, for undirected unweighted simple graphs, we break this quadratic barrier while achieving a non-trivial query time as follows. There is an O(n√n) space data structure that can report an (s,t)-mincut in O(min{m,n√n}) time after the insertion/failure of any given pair of query edges. To arrive at our results, as one of our key techniques, we establish interesting relationships between (s,t)-cuts of capacity (minimum+Δ), Δ ≥ 0, and maximum (s,t)-flow. We believe that these techniques and the graph-theoretic result in 2.(b) are of independent interest.
@InProceedings{baswana_et_al:LIPIcs.ESA.2025.68, author = {Baswana, Surender and Bhanja, Koustav and Roy, Anupam}, title = {{Faster Algorithm for Second (s,t)-Mincut and Breaking Quadratic Barrier for Dual Edge Sensitivity for (s,t)-Mincut}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {68:1--68:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.68}, URN = {urn:nbn:de:0030-drops-245369}, doi = {10.4230/LIPIcs.ESA.2025.68}, annote = {Keywords: mincut, second mincut, compact structure, fault tolerant, sensitivity oracle, dual edges, st mincut, global mincut, characterization} }
Feedback for Dagstuhl Publishing