A replacement action is a function ℒ that maps each graph H to a collection of graphs of size at most |V(H)|. Given a graph class ℋ, we consider a general family of graph modification problems, called ℒ-Replacement to ℋ, where the input is a graph G and the question is whether it is possible to replace some induced subgraph H₁ of G on at most k vertices by a graph H₂ in ℒ(H₁) so that the resulting graph belongs to ℋ. ℒ-Replacement to ℋ can simulate many graph modification problems including vertex deletion, edge deletion/addition/edition/contraction, vertex identification, subgraph complementation, independent set deletion, (induced) matching deletion/contraction, etc. We present two algorithms. The first one solves ℒ-Replacement to ℋ in time 2^poly(k) ⋅ |V(G)|² for every minor-closed graph class ℋ, where poly is a polynomial whose degree depends on ℋ, under a mild technical condition on ℒ. This generalizes the results of Morelle, Sau, Stamoulis, and Thilikos [ICALP 2020, ICALP 2023] for the particular case of Vertex Deletion to ℋ within the same running time. Our second algorithm is an improvement of the first one when ℋ is the class of graphs embeddable in a surface of Euler genus at most g and runs in time 2^𝒪(k⁹) ⋅ |V(G)|², where the 𝒪(⋅) notation depends on g. To the best of our knowledge, these are the first parameterized algorithms with a reasonable parametric dependence for such a general family of graph modification problems to minor-closed classes.
@InProceedings{morelle_et_al:LIPIcs.ESA.2025.7, author = {Morelle, Laure and Sau, Ignasi and Thilikos, Dimitrios M.}, title = {{Graph Modification of Bounded Size to Minor-Closed Classes as Fast as Vertex Deletion}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {7:1--7:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.7}, URN = {urn:nbn:de:0030-drops-244751}, doi = {10.4230/LIPIcs.ESA.2025.7}, annote = {Keywords: Graph modification problems, Parameterized complexity, Graph minors, Flat Wall theorem, Irrelevant vertex technique, Algorithmic meta-theorem, Parametric dependence, Dynamic programming} }
Feedback for Dagstuhl Publishing