The tree edit distance is a natural dissimilarity measure between rooted ordered trees whose nodes are labeled over an alphabet Σ. It is defined as the minimum number of node edits - insertions, deletions, and relabelings - required to transform one tree into the other. The weighted variant assigns costs ≥ 1 to edits (based on node labels), minimizing total cost rather than edit count. The unweighted tree edit distance between two trees of total size n can be computed in 𝒪(n^{2.6857}) time; in contrast, determining the weighted tree edit distance is fine-grained equivalent to the All-Pairs Shortest Paths (APSP) problem and requires n³/2^Ω(√{log n}) time [Nogler, Polak, Saha, Vassilevska Williams, Xu, Ye; STOC'25]. These impractical super-quadratic times for large, similar trees motivate the bounded version, parameterizing runtime by the distance k to enable faster algorithms for k ≪ n. Prior algorithms for bounded unweighted edit distance achieve 𝒪(nk²log n) [Akmal & Jin; ICALP’21] and 𝒪(n + k⁷log k) [Das, Gilbert, Hajiaghayi, Kociumaka, Saha; STOC'23]. For weighted, only 𝒪(n + k^{15}) is known [Das, Gilbert, Hajiaghayi, Kociumaka, Saha; STOC'23]. We present an 𝒪(n + k⁶ log k)-time algorithm for bounded tree edit distance in both weighted/unweighted settings. First, we devise a simpler weighted 𝒪(nk² log n)-time algorithm. Next, we exploit periodic structures in input trees via an optimized universal kernel: modifying prior 𝒪(n)-time 𝒪(k⁵)-size kernels to generate such structured instances, enabling efficient analysis.
@InProceedings{kociumaka_et_al:LIPIcs.ESA.2025.94, author = {Kociumaka, Tomasz and Shahali, Ali}, title = {{Faster Algorithm for Bounded Tree Edit Distance in the Low-Distance Regime}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {94:1--94:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.94}, URN = {urn:nbn:de:0030-drops-245634}, doi = {10.4230/LIPIcs.ESA.2025.94}, annote = {Keywords: tree edit distance, edit distance, kernelization, dynamic programming} }
Feedback for Dagstuhl Publishing