In the parameterized problem #IndSub(Φ) for fixed graph properties Φ, given as input a graph G and an integer k, the task is to compute the number of induced k-vertex subgraphs satisfying Φ. Dörfler et al. [Algorithmica 2022] and Roth et al. [SICOMP 2024] conjectured that #IndSub(Φ) is #W[1]-hard for all non-meager properties Φ, i.e., properties that are nontrivial for infinitely many k. This conjecture has been confirmed for several restricted types of properties, including all hereditary properties [STOC 2022] and all edge-monotone properties [STOC 2024]. We refute this conjecture by showing that induced k-vertex graphs that are scorpions can be counted in time O(n⁴) for all k. Scorpions were introduced more than 50 years ago in the context of the evasiveness conjecture. A simple variant of this construction results in graph properties that achieve arbitrary intermediate complexity assuming ETH. Moreover, we formulate an updated conjecture on the complexity of #IndSub(Φ) that correctly captures the complexity status of scorpions and related constructions.
@InProceedings{curticapean_et_al:LIPIcs.ESA.2025.96, author = {Curticapean, Radu and D\"{o}ring, Simon and Neuen, Daniel}, title = {{Counting Small Induced Subgraphs: Scorpions Are Easy but Not Trivial}}, booktitle = {33rd Annual European Symposium on Algorithms (ESA 2025)}, pages = {96:1--96:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-395-9}, ISSN = {1868-8969}, year = {2025}, volume = {351}, editor = {Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.96}, URN = {urn:nbn:de:0030-drops-245651}, doi = {10.4230/LIPIcs.ESA.2025.96}, annote = {Keywords: induced subgraphs, counting complexity, parameterized complexity, scorpions} }
Feedback for Dagstuhl Publishing