Two-Dimensional Kripke Semantics I: Presheaves

Author G. A. Kavvos



PDF
Thumbnail PDF

File

LIPIcs.FSCD.2024.14.pdf
  • Filesize: 0.86 MB
  • 23 pages

Document Identifiers

Author Details

G. A. Kavvos
  • University of Bristol, United Kingdom

Acknowledgements

I have benefitted significantly from conversations with Dan Licata, Nachiappan Valliappan, Fabian Ruch, Amar Hadzihasanovic, Kohei Kishida, Sean Moss, Sam Staton, Daniel Gratzer, Lars Birkedal, Jonathan Sterling, Philip Saville, and Gordon Plotkin.

Cite AsGet BibTex

G. A. Kavvos. Two-Dimensional Kripke Semantics I: Presheaves. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 14:1-14:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.FSCD.2024.14

Abstract

The study of modal logic has witnessed tremendous development following the introduction of Kripke semantics. However, recent developments in programming languages and type theory have led to a second way of studying modalities, namely through their categorical semantics. We show how the two correspond.

Subject Classification

ACM Subject Classification
  • Theory of computation → Modal and temporal logics
  • Theory of computation → Categorical semantics
Keywords
  • modal logic
  • categorical semantics
  • Kripke semantics
  • duality
  • open maps

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories. Cambridge University Press, 1994. URL: https://doi.org/10.1017/CBO9780511600579.
  2. Natasha Alechina, Michael Mendler, Valeria de Paiva, and Eike Ritter. Categorical and Kripke semantics for constructive S4 modal logic. Computer Science Logic, pages 292-307, 2001. URL: https://doi.org/10.1007/3-540-44802-0_21.
  3. Mathieu Anel and André Joyal. Topo-logie. In Mathieu Anel and Gabriel Catren, editors, New Spaces in Mathematics, pages 155-257. Cambridge University Press, 2021. URL: https://doi.org/10.1017/9781108854429.007.
  4. Steve Awodey. Category Theory. Oxford Logic Guides. Oxford University Press, 2010. Google Scholar
  5. Steve Awodey, Kohei Kishida, and Hans-Christoph Kotzsch. Topos Semantics for Higher-Order Modal Logic. Logique et Analyse, 228:591-636, 2014. URL: https://doi.org/10.2143/LEA.228.0.3078176.
  6. Steve Awodey and Florian Rabe. Kripke Semantics for Martin-Löf’s Extensional Type Theory. Logical Methods in Computer Science, 7(3):1-34, 2011. URL: https://doi.org/10.2168/LMCS-7(3:18)2011.
  7. John C. Baez and James Dolan. Categorification. In Ezra Getzler and Mikhail Kapranov, editors, Higher Category Theory, number 230 in Contemporary Mathematics. American Mathematical Society, 1998. eprint: math/9802029. URL: https://doi.org/10.48550/arXiv.math/9802029.
  8. B. Banaschewski and G. Bruns. The fundamental duality of partially ordered sets. Order, 5(1), 1988. URL: https://doi.org/10.1007/BF00143898.
  9. J. Bénabou. Distributors at work, 2000. Notes of Thomas Streicher based on lectures of Jean Bénabou. URL: https://www2.mathematik.tu-darmstadt.de/~streicher/FIBR/DiWo.pdf.
  10. Evert Willem Beth. The Foundations of Mathematics. North-Holland Pub. Co., 1959. Google Scholar
  11. Guram Bezhanishvili and Wesley H. Holliday. A semantic hierarchy for intuitionistic logic. Indagationes Mathematicae, 30(3):403-469, 2019. URL: https://doi.org/10.1016/j.indag.2019.01.001.
  12. Nick Bezhanishvili. Lattices of intermediate and cylindric modal logics. PhD thesis, University of Amsterdam, 2006. Report number DS-2006-02. URL: https://eprints.illc.uva.nl/id/eprint/2049/.
  13. Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M. Pitts, and Bas Spitters. Modal dependent type theory and dependent right adjoints. Mathematical Structures in Computer Science, 30(2):118-138, 2020. URL: https://doi.org/10.1017/S0960129519000197.
  14. Lars Birkedal, Rasmus Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps in synthetic guarded domain theory: step-indexing in the topos of trees. Logical Methods in Computer Science, 8(4), 2012. URL: https://doi.org/10.2168/LMCS-8(4:1)2012.
  15. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001. URL: https://doi.org/10.1017/CBO9781107050884.
  16. Francis Borceux. Handbook of Categorical Algebra, volume 3 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1994. Google Scholar
  17. Francis Borceux. Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1994. Google Scholar
  18. Francis Borceux and Dominique Dejean. Cauchy completion in category theory. Cahiers de Topologie et Géométrie Différentielle Catégoriques, 27(2):133-146, 1986. URL: http://www.numdam.org/item/?id=CTGDC_1986__27_2_133_0.
  19. Milan Božić and Kosta Došen. Models for normal intuitionistic modal logics. Studia Logica, 43(3):217-245, 1984. URL: https://doi.org/10.1007/BF02429840.
  20. Marta Bunge. Categories of Set-Valued Functors. PhD thesis, University of Pennsylvania, 1966. Google Scholar
  21. Gian Luca Cattani and Glynn Winskel. Presheaf models for concurrency. In Dirk Dalen and Marc Bezem, editors, Computer Science Logic, volume 1258 of Lecture Notes in Computer Science, pages 58-75, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/3-540-63172-0_32.
  22. Gian Luca Cattani and Glynn Winskel. Profunctors, open maps and bisimulation. Mathematical Structures in Computer Science, 15(3):553-614, 2005. URL: https://doi.org/10.1017/S0960129505004718.
  23. Alexander Chagrov and Michael Zakharyaschev. Modal Logic. Number 35 in Oxford Logic Guides. Oxford University Press, 1996. URL: https://doi.org/10.1093/oso/9780198537793.001.0001.
  24. Denis-Charles Cisinski. Higher Categories and Homotopical Algebra. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781108588737.
  25. Ranald Clouston. Fitch-Style Modal Lambda Calculi. In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation Structures, volume 10803 of Lecture Notes in Computer Science, pages 258-275, Cham, 2018. Springer International Publishing. URL: https://doi.org/10.1007/978-3-319-89366-2_14.
  26. Roy L. Crole. Categories for Types. Cambridge University Press, 1993. URL: https://doi.org/10.1017/CBO9781139172707.
  27. Anupam Das and Sonia Marin. On intuitionistic diamonds (and lack thereof). In Revantha Ramanayake and Josef Urban, editors, Automated Reasoning with Analytic Tableaux and Related Methods, volume 14278 of Lecture Notes in Computer Science, pages 283-301. Springer Nature Switzerland, 2023. URL: https://doi.org/10.1007/978-3-031-43513-3_16.
  28. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2nd edition, 2002. URL: https://doi.org/10.1017/CBO9780511809088.
  29. D.H.J. De Jongh and A.S. Troelstra. On the connection of partially ordered sets with some pseudo-boolean algebras. Indagationes Mathematicae (Proceedings), 69:317-329, 1966. URL: https://doi.org/10.1016/S1385-7258(66)50036-1.
  30. Wojciech Dzik, Jouni Järvinen, and Michiro Kondo. Intuitionistic propositional logic with Galois connections. Logic Journal of IGPL, 18(6):837-858, 2010. URL: https://doi.org/10.1093/jigpal/jzp057.
  31. M. Erné. The ABC of order and topology. In H. Herrlich and H. E. Porst, editors, Category Theory at Work, Research and Exposition in Mathematics, pages 57-83. Heldermann Verlag, 1991. URL: https://www.heldermann.de/R&E/RAE18/ctw05.pdf.
  32. Leo Esakia. Heyting Algebras: Duality Theory, volume 50 of Trends in Logic. Springer International Publishing, 2019. URL: https://doi.org/10.1007/978-3-030-12096-2.
  33. W. B. Ewald. Intuitionistic Tense and Modal Logic. The Journal of Symbolic Logic, 51(1):166-179, 1986. URL: https://doi.org/10.2307/2273953.
  34. M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158), pages 193-202, Trento, Italy, 1999. IEEE Computer Society Press. URL: https://doi.org/10.1109/LICS.1999.782615.
  35. Marcelo Fiore. Second-Order and Dependently-Sorted Abstract Syntax. In 2008 23rd Annual IEEE Symposium on Logic in Computer Science, pages 57-68. IEEE, 2008. URL: https://doi.org/10.1109/LICS.2008.38.
  36. Marcelo Fiore and Chung-Kil Hur. Second-Order Equational Logic (Extended Abstract). In Anuj Dawar and Helmut Veith, editors, Computer Science Logic, volume 6247 of Lecture Notes in Computer Science, pages 320-335. Springer Berlin Heidelberg, 2010. URL: https://doi.org/10.1007/978-3-642-15205-4_26.
  37. Marcelo Fiore and Ola Mahmoud. Second-Order Algebraic Theories: (Extended Abstract). In Petr Hliněny and Antonín Kučera, editors, Mathematical Foundations of Computer Science 2010, volume 6281 of Lecture Notes in Computer Science, pages 368-380. Springer Berlin Heidelberg, 2010. URL: https://doi.org/10.1007/978-3-642-15155-2_33.
  38. Gisèle Fischer Servi. Semantics for a class of intuitionistic modal calculi. In Italian Studies in the Philosophy of Science, volume 47 of Boston Studies in the Philosophy of Science, pages 59-72. Springer Netherlands, 1980. URL: https://doi.org/10.1007/978-94-009-8937-5_5.
  39. Melvin Fitting. Intuitionistic Logic, Model Theory and Forcing. Studies in Logic and the Foundation of Mathematics. North-Holland, 1969. Google Scholar
  40. Mai Gehrke. Stone duality, topological algebra, and recognition. Journal of Pure and Applied Algebra, 220(7):2711-2747, 2016. URL: https://doi.org/10.1016/j.jpaa.2015.12.007.
  41. Mai Gehrke and Sam van Gool. Topological Duality for Distributive Lattices: Theory and Applications. Number 61 in Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2024. URL: https://arxiv.org/abs/2203.03286.
  42. S. Ghilardi and G. C. Meloni. Modal and tense predicate logic: Models in presheaves and categorical conceptualization. In Francis Borceux, editor, Categorical Algebra and its Applications, volume 1348 of Lecture Notes in Mathematics, pages 130-142. Springer Berlin Heidelberg, 1988. URL: https://doi.org/10.1007/BFb0081355.
  43. Silvio Ghilardi. Presheaf semantics and independence results for some non-classical first-order logics. Archive for Mathematical Logic, 29(2):125-136, 1989. URL: https://doi.org/10.1007/BF01620621.
  44. Silvio Ghilardi. Incompleteness Results in Kripke Semantics. The Journal of Symbolic Logic, 56(2):517-538, 1991. URL: https://doi.org/10.2307/2274697.
  45. Robert Goldblatt. Metamathematics of Modal Logic. PhD Thesis, Victoria University, Wellington, 1974. Google Scholar
  46. Robert Goldblatt. Mathematical modal logic: A view of its evolution. In Dov M. Gabbay, editor, Handbook of the History of Logic, volume 7. Elsevier, 2006. URL: https://doi.org/10.1016/S1570-8683(03)00008-9.
  47. Valentin Goranko and Antje Rumberg. Temporal Logic. In Edward N. Zalta and Uri Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2023 edition, 2023. Google Scholar
  48. Daniel Gratzer. Normalization for Multimodal Type Theory. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 1-13. Association for Computing Machinery, 2022. URL: https://doi.org/10.1145/3531130.3532398.
  49. Daniel Gratzer. Syntax and semantics of modal type theory. PhD thesis, Aarhus University, 2023. Google Scholar
  50. Daniel Gratzer, Evan Cavallo, G. A. Kavvos, Adrien Guatto, and Lars Birkedal. Modalities and Parametric Adjoints. ACM Transactions on Computational Logic, 23(3):1-29, 2022. URL: https://doi.org/10.1145/3514241.
  51. Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal Dependent Type Theory. In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 492-506. Association for Computing Machinery, 2020. URL: https://doi.org/10.1145/3373718.3394736.
  52. Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. Multimodal Dependent Type Theory. Logical Methods in Computer Science, 17(3), 2021. URL: https://doi.org/10.46298/lmcs-17(3:11)2021.
  53. Makoto Hamana. Free Σ-Monoids: A Higher-Order Syntax with Metavariables. In Wei-Ngan Chin, editor, Programming Languages and Systems, volume 3302 of Lecture Notes in Computer Science, pages 348-363. Springer Berlin Heidelberg, 2004. URL: https://doi.org/10.1007/978-3-540-30477-7_23.
  54. Yasusi Hasimoto. Heyting Algebras with Operators. Mathematical Logic Quarterly, 47(2):187-196, 2001. URL: https://doi.org/10.1002/1521-3870(200105)47:2<187::AID-MALQ187>3.0.CO;2-J.
  55. Jens Hemelaer. Toposes over which essential implies locally connected. Cahiers de Topologie et Géométrie Différentielle Catégoriques, LXIII(4):425-451, 2022. URL: https://arxiv.org/abs/2204.02749.
  56. Claudio Hermida. A categorical outlook on relational modalities and simulations. Information and Computation, 209(12):1505-1517, 2011. URL: https://doi.org/10.1016/j.ic.2010.09.009.
  57. Martin Hofmann. Syntax and Semantics of Dependent Types. In Andrew M. Pitts and P. Dybjer, editors, Semantics and Logics of Computation, pages 79-130. Cambridge University Press, 1997. URL: https://doi.org/10.1017/CBO9780511526619.004.
  58. Martin Hofmann. Semantical analysis of higher-order abstract syntax. In Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158), pages 204-213. IEEE Computer Society Press, 1999. URL: https://doi.org/10.1109/LICS.1999.782616.
  59. Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, 2nd edition, 2004. Google Scholar
  60. Peter T. Johnstone. Open maps of toposes. Manuscripta Mathematica, 31(1):217-247, 1980. URL: https://doi.org/10.1007/BF01303275.
  61. Peter T. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1982. Google Scholar
  62. Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 1. Oxford University Press, 2002. Google Scholar
  63. Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 2. Oxford University Press, 2002. Google Scholar
  64. Bjarni Jonnson and Alfred Tarski. Boolean algebras with operators. part II. American Journal of Mathematics, 74(1):127, 1952. URL: https://doi.org/10.2307/2372074.
  65. André Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from Open Maps. Information and Computation, 127(2):164-185, 1996. URL: https://doi.org/10.1006/inco.1996.0057.
  66. G. Max Kelly. Basic concepts of enriched category theory. Reprints in Theory and Applications of Categories, 10:1-136, 2005. Originally published as: Cambridge University Press, Lecture Notes in Mathematics 64, 1982. URL: http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html.
  67. Kohei Kishida. Categories and modalities. In Elaine Landry, editor, Categories for the Working Philosopher. Oxford University Press, 2018. URL: https://doi.org/10.1093/oso/9780198748991.003.0009.
  68. Saul Kripke. Semantical Considerations on Modal Logic. Acta Philosophica Fennica, 16:83-94, 1963. URL: https://philpapers.org/rec/KRISCO.
  69. Saul A. Kripke. Semantical Analysis of Modal Logic I. Normal Modal Propositional Calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9(5-6):67-96, 1963. URL: https://doi.org/10.1002/malq.19630090502.
  70. Saul A. Kripke. Semantical Analysis of Modal Logic II. Non-Normal Modal Propositional Calculi. In Alfred Tarski, Leon Henkin, and J. W. Addison, editors, The theory of models, Proceedings of the 1963 International Symposium at Berkeley, pages 206-220. North-Holland, 1965. Google Scholar
  71. Joachim Lambek. From lambda calculus to cartesian closed categories. In Jonathan P. Seldin and J. Roger Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism, pages 376-402. Academic Press, 1980. Google Scholar
  72. Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Categorical Logic. Number 7 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1988. Google Scholar
  73. F. William Lawvere. Metric spaces, generalized logic, and closed categories. Rendiconti del Seminario Matematico e Fisico di Milano, 43(1):135-166, 1973. URL: https://doi.org/10.1007/BF02924844.
  74. Fosco Loregian. (Co)end Calculus. Cambridge University Press, 2021. URL: https://doi.org/10.1017/9781108778657.
  75. Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer New York, 2 edition, 1978. URL: https://doi.org/10.1007/978-1-4757-4721-8.
  76. Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Universitext. Springer New York, 1994. URL: https://doi.org/10.1007/978-1-4612-0927-0.
  77. Colin McLarty. Every Grothendieck topos has a one-way site. Theory and Applications of Categories, 16(5):123-126, 2006. URL: http://www.tac.mta.ca/tac/volumes/16/5/16-05abs.html.
  78. M. Menni and C. Smith. Modes of adjointness. Journal of Philosophical Logic, 43(2):365-391, 2014. URL: https://doi.org/10.1007/s10992-012-9266-y.
  79. John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda calculus. Annals of Pure and Applied Logic, 51(1-2):99-124, 1991. URL: https://doi.org/10.1016/0168-0072(91)90067-V.
  80. Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri nets, event structures and domains, Part I. Theoretical Computer Science, 13(1):85-108, 1981. URL: https://doi.org/10.1016/0304-3975(81)90112-2.
  81. F. J. Oles. Type Algebras, Functor Categories, and Block Structure. In Maurice Nivat and John C. Reynolds, editors, Algebraic Methods in Semantics, pages 543-573. Cambridge University Press, 1985. Google Scholar
  82. Frank J. Oles. Functor Categories and Store Shapes. In Peter W. O’Hearn and Robert D. Tennent, editors, Algol-like Languages, volume 2, pages 3-12. Birkhäuser Boston, Boston, MA, 1997. URL: https://doi.org/10.1007/978-1-4757-3851-3_1.
  83. Ewa Orłowska and Ingrid Rewitzky. Discrete Dualities for Heyting algebras with Operators. Fundamenta Informaticae, 81(1):275-295, 2007. Google Scholar
  84. Jorge Picado and Aleš Pultr. Frames and Locales: Topology without points. Frontiers in Mathematics. Springer Basel, 2012. URL: https://doi.org/10.1007/978-3-0348-0154-6.
  85. Gordon D. Plotkin and Colin Stirling. A framework for intuitionistic modal logics. In Joseph Y. Halpern, editor, Proceedings of the 1st Conference on Theoretical Aspects of Reasoning about Knowledge, Monterey, CA, USA, March 1986. Morgan Kaufmann, 1986. Google Scholar
  86. George N. Raney. Completely distributive complete lattices. Proceedings of the American Mathematical Society, 3(5):677-680, 1952. URL: https://doi.org/10.1090/S0002-9939-1952-0052392-3.
  87. Emily Riehl. Categorical homotopy theory, volume 24 of New Mathematical Monographs. Cambridge University Press, 2014. URL: https://doi.org/10.1017/CBO9781107261457.
  88. Emily Riehl. Category Theory in Context. Dover Publications, 2016. URL: http://www.math.jhu.edu/~eriehl/context.pdf.
  89. Mehrnoosh Sadrzadeh and Roy Dyckhoff. Positive logic with adjoint modalities: proof theory, semantics, and reasoning about information. The Review of Symbolic Logic, 3(3):351-373, 2010. URL: https://doi.org/10.1017/S1755020310000134.
  90. Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Transactions on Programming Languages and Systems, 31(4):1-41, 2009. URL: https://doi.org/10.1145/1516507.1516510.
  91. Krister Segerberg. Decidability of S4.1. Theoria, 34(1):7-20, 1968. URL: https://doi.org/10.1111/j.1755-2567.1968.tb00335.x.
  92. Alex K. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, The University of Edinburgh, 1994. URL: http://hdl.handle.net/1842/407.
  93. Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism. Elsevier, 2006. Google Scholar
  94. V. H. Sotirov. Modal theories with intuitionistic logic. In Mathematical Logic: Proceedings of the Conference on Mathematical Logic, Dedicated to the Memory of A.A. Markov (1903-1979): Sofia, September 22-23, 1980. Bulgarian Academy of Sciences, 1984. Google Scholar
  95. David Spivak. Conditions for a functor to induce a logical functor between presheaf toposes? MathOverflow, 2016. URL: https://mathoverflow.net/q/253878.
  96. S. K. Thomason. Categories of frames for modal logic. The Journal of Symbolic Logic, 40(3):439-442, 1975. URL: https://doi.org/10.2307/2272167.
  97. Nachiappan Valliappan, Fabian Ruch, and Carlos Tomé Cortiñas. Normalization for Fitch-style Modal Calculi. Proceedings of the ACM on Programming Languages, 6(ICFP):772-798, 2022. URL: https://doi.org/10.1145/3547649.
  98. Johan van Benthem. Modal logic for open minds. Number 199 in CSLI lecture notes. Center for the Study of Language and Information, Stanford, California, 2010. Google Scholar
  99. Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75-84, 2015. URL: https://doi.org/10.1145/2699407.
  100. Glynn Winskel. Prime algebraicity. Theoretical Computer Science, 410(41):4160-4168, 2009. URL: https://doi.org/10.1016/j.tcs.2009.06.015.
  101. F. Wolter and M. Zakharyaschev. The relation between intuitionistic and classical modal logics. Algebra and Logic, 36(2):73-92, 1997. URL: https://doi.org/10.1007/BF02672476.
  102. Frank Wolter and Michael Zakharyaschev. Intuitionistic Modal Logic. In Andrea Cantini, Ettore Casari, and Pierluigi Minari, editors, Logic and Foundations of Mathematics: Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995, pages 227-238. Springer Netherlands, Dordrecht, 1999. URL: https://doi.org/10.1007/978-94-017-2109-7_17.
  103. Frank Wolter and Michael Zakharyaschev. Intuitionistic Modal Logics as Fragments of Classical Bimodal Logics. In Ewa Orłowska, editor, Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa, Studies in Fuzziness and Soft Computing, pages 168-186. Physica Heidelberg, 1999. Google Scholar
  104. David Yetter. On right adjoints to exponential functors. Journal of Pure and Applied Algebra, 45(3):287-304, 1987. URL: https://doi.org/10.1016/0022-4049(87)90077-6.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail