LIPIcs.FSTTCS.2009.2318.pdf
- Filesize: 196 kB
- 9 pages
Partial Cover problems are optimization versions of fundamental and well studied problems like {\sc Vertex Cover} and {\sc Dominating Set}. Here one is interested in covering (or dominating) the maximum number of edges (or vertices) using a given number ($k$) of vertices, rather than covering all edges (or vertices). In general graphs, these problems are hard for parameterized complexity classes when parameterized by $k$. It was recently shown by Amini et. al. [{\em FSTTCS 08}\,] that {\sc Partial Vertex Cover} and {\sc Partial Dominating Set} are fixed parameter tractable on large classes of sparse graphs, namely $H$-minor free graphs, which include planar graphs and graphs of bounded genus. In particular, it was shown that on planar graphs both problems can be solved in time $2^{\cO(k)}n^{\cO(1)}$.
Feedback for Dagstuhl Publishing