Document

# Parameterized Algorithms for List K-Cycle

## File

LIPIcs.FSTTCS.2016.22.pdf
• Filesize: 0.54 MB
• 15 pages

## Cite As

Fahad Panolan and Meirav Zehavi. Parameterized Algorithms for List K-Cycle. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.22

## Abstract

The classic K-Cycle problem asks if a graph G, with vertex set V(G), has a simple cycle containing all vertices of a given set K subseteq V(G). In terms of colored graphs, it can be rephrased as follows: Given a graph G, a set K subset of V(G) and an injective coloring c from K to {1,2,...,|K|}, decide if G has a simple cycle containing each color in {1,2,...,|K|} (once). Another problem widely known since the introduction of color coding is {Colorful Cycle}. Given a graph G and a coloring c from V(G) to {1,2,...,k} for some natural number k, it asks if G has a simple cycle of length k containing each color in {1,2,...,k} (once). We study a generalization of these problems: Given a graph G, a set K subset of V(G), a list-coloring L from K to 2^{{1,2,...,k^*}} for some natural number k^* and a parameter k, List K-Cycle asks if one can assign a color to each vertex in K so that G would have a simple cycle (of arbitrary length) containing exactly k vertices from K with distinct colors. We design a randomized algorithm for List K-Cycle running in time 2^kn^{O(1)} on an -vertex graph, matching the best known running times of algorithms for both K-Cycle and Colorful Cycle. Moreover, unless the Set Cover Conjecture is false, our algorithm is essentially optimal. We also study a variant of List K-Cycle that generalizes the classic Hamiltonicity problem, where one specifies the size of a solution. Our results integrate three related algebraic approaches, introduced by Bjorklund, Husfeldt and Taslaman (SODA'12), Bjorklund, Kaski and Kowalik (STACS'13), and Bjorklund (FOCS'10).
##### Keywords
• Parameterized Complexity
• K-Cycle
• Colorful Path
• k-Path

## Metrics

• Access Statistics
• Total Accesses (updated on a weekly basis)
0

## References

1. N. Alon, R. Yuster, and U. Zwick. Color coding. J. ACM, 42(4):844-856, 1995.
2. A. Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput., 43(1):280-299, 2014.
3. A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto. Narrow sieves for parameterized paths and packings. CoRR abs/1007.1161, 2010.
4. A. Björklund, T. Husfeldt, and N. Taslaman. Shortest cycle through specified elements. In SODA, pages 1747-1753, 2012.
5. A. Björklund, V. Kamat, L. Kowalik, and M. Zehavi. Spotting trees with few leaves. In ICALP, pages 243-255, 2015.
6. A. Björklund, P. Kaski, and L. Kowalik. Constrained multilinear detection and generalized graph motifs. Algorithmica, 74(2):947-967, 2016.
7. A. Björklund, P. Kaski, J. Lauri, and L. Kowalik. Engineering motif search for large graphs. In ALENEX, pages 104-118, 2016.
8. H. L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms, 14(1):1-23, 1993.
9. J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S. H. Sze, and F. Zhang. Randomized divide-and-conquer: Improved path, matching, and packing algorithms. SIAM J. on Computing, 38(6):2526-2547, 2009.
10. M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, P. Paturi, S. Saurabh, and M. Wahlström. On problems as hard as CNF-SAT. In CCC, pages 74-84, 2012.
11. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized algorithms. Springer, 2015.
12. R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing. Inform. Process Lett., 7(4):193-195, 1978.
13. P. Deshpande, R. Barzilay, and D. R. Karger. Randomized decoding for selection-and-ordering problems. In HLT-NAACL, pages 444-451, 2007.
14. R. Downey and M. Fellows. Fundamentals of parameterized complexity. Springer, 2013.
15. H. Fleischner and G. H. Woeginger. Detecting cycles through three fixed vertices in a graph. Inform. Process Lett., 41:29-33, 1992.
16. F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh. Representative sets of product families. In ESA, pages 443-454, 2014.
17. F. V. Fomin, D. Lokshtanov, and S. Saurabh. Efficient computation of representative sets with applications in parameterized and exact agorithms. In SODA, pages 142-151, 2014.
18. S. Fortune, J. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theor. Comput. Sci., 10:111-121, 1980.
19. F. Hüffner, S. Wernicke, and T. Zichner. Algorithm engineering for color-coding with applications to signaling pathway detection. Algorithmica, 52(2):114-132, 2008.
20. K. Kawarabayashi. An improved algorithm for finding cycles through elements. In IPCO, pages 374-384, 2008.
21. K. Kawarabayashi, Z. Li, and B. A. Reed. Recognizing a totally odd k₄-subdivision, parity 2-disjoint rooted paths and a parity cycle through specified elements. In SODA, pages 318-328, 2010.
22. I. Koutis. Faster algebraic algorithms for path and packing problems. In ICALP, pages 575-586, 2008.
23. L. Kowalik and J. Lauri. On finding rainbow and colorful paths. Theor. Comput. Sci., 2016.
24. A. S. LaPaugh and R. L. Rivest. The subgraph homomorphism problem. J. Comput. Sys. Sci., 20:133-149, 1980.
25. B. Monien. How to find long paths efficiently. Annals Disc. Math., 25:239-254, 1985.
26. R. Y. Pinter, H. Shachnai, and M. Zehavi. Improved parameterized algorithms for network query problems. In IPEC, pages 294-306, 2014.
27. R. Y. Pinter and M. Zehavi. Algorithms for topology-free and alignment network queries. JDA, 27:29-53, 2014.
28. N. Robertson and P. D. Seymour. Graph minors XIII: The disjoint paths problem. J. Combin. Theory Ser. B, 63:65-110, 1995.
29. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. Assoc. Comput. Mach., 27(4):701-717, 1980.
30. H. Shachnai and M. Zehavi. Representative families: A unified tradeoff-based approach. In ESA, pages 786-797, 2014.
31. M. Wahlström. Abusing the Tutte matrix: an algebraic instance compression for the k-set-cycle problem. In STACS, pages 341-352, 2013.
32. R. Williams. Finding paths of length k in O^*(2^k) time. Inf. Process. Lett., 109(6):315-318, 2009.
33. Kobayashi Y. and K. Kawarabayashi. Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In SODA, pages 1146-1155, 2009.
34. M. Zehavi. Parameterized algorithms for the module motif problem. In MFCS, pages 825-836, 2013.
35. M. Zehavi. Mixing color coding-related techniques. In ESA, pages 1037-1049, 2015.
36. R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages 216-226, 1979.
X

Feedback for Dagstuhl Publishing