Geometry Meets Vectors: Approximation Algorithms for Multidimensional Packing

Authors Arindam Khan , Eklavya Sharma , K. V. N. Sreenivas



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2022.23.pdf
  • Filesize: 0.91 MB
  • 22 pages

Document Identifiers

Author Details

Arindam Khan
  • Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India
Eklavya Sharma
  • Department of Industrial & Enterprise Systems Engineering, University of Illinois at Urbana-Champaign, IL, USA
K. V. N. Sreenivas
  • Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Acknowledgements

We thank Nikhil Bansal, Thomas Rothvoss, and anonymous reviewers for their helpful comments.

Cite AsGet BibTex

Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Geometry Meets Vectors: Approximation Algorithms for Multidimensional Packing. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.FSTTCS.2022.23

Abstract

We study the generalized multidimensional bin packing problem (GVBP) that generalizes both geometric packing and vector packing. Here, we are given n rectangular items where the i-th item has width w(i), height h(i), and d nonnegative weights v₁(i), v₂(i), …, v_d(i). Our goal is to get an axis-parallel non-overlapping packing of the items into square bins so that for all j ∈ [d], the sum of the j-th weight of items in each bin is at most 1. This is a natural problem arising in logistics, resource allocation, and scheduling. Despite being well-studied in practice, approximation algorithms for this problem have rarely been explored. We first obtain two simple algorithms for GVBP having asymptotic approximation ratios 6(d+1) and 3(1 + ln(d+1) + ε). We then extend the Round-and-Approx (R&A) framework [Bansal et al., 2009; Bansal and Khan, 2014] to wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated techniques, we obtain better approximation algorithms for GVBP, and we get further improvement by combining them with the R&A framework. This gives us an asymptotic approximation ratio of 2(1 + ln((d+4)/2)) + ε for GVBP, which improves to 2.919+ε for the special case of d = 1. We obtain further improvement when the items are allowed to be rotated. We also present algorithms for a generalization of GVBP where the items are high dimensional cuboids.

Subject Classification

ACM Subject Classification
  • Theory of computation → Packing and covering problems
Keywords
  • Bin packing
  • rectangle packing
  • multidimensional packing
  • approximation algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. M. T. Alonso, R. Alvarez-Valdes, Manuel Iori, F. Parreño, and J. M. Tamarit. Mathematical models for multicontainer loading problems. Omega, 66:106-117, 2017. URL: https://doi.org/10.1016/j.omega.2016.02.002.
  2. Samir V. Amiouny, John J. Bartholdi III, John H. Vande Vate, and Jixian Zhang. Balanced loading. Operations Research, 40(2):238-246, 1992. URL: https://doi.org/10.1287/opre.40.2.238.
  3. Nikhil Bansal, Alberto Caprara, and Maxim Sviridenko. A new approximation method for set covering problems, with applications to multidimensional bin packing. SIAM Journal on Computing, 39(4):1256-1278, 2009. URL: https://doi.org/10.1137/080736831.
  4. Nikhil Bansal, Jose R. Correa, Claire Kenyon, and Maxim Sviridenko. Bin packing in multiple dimensions: inapproximability results and approximation schemes. Mathematics of Operations Research, 31:31-49, 2006. URL: https://doi.org/10.1287/moor.1050.0168.
  5. Nikhil Bansal, Marek Eliáš, and Arindam Khan. Improved approximation for vector bin packing. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1561-1579. SIAM, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch106.
  6. Nikhil Bansal and Arindam Khan. Improved approximation algorithm for two-dimensional bin packing. In SODA, pages 13-25, 2014. URL: https://doi.org/10.1137/1.9781611973402.2.
  7. Suman Kalyan Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Negahbani. Fair algorithms for clustering. In Conference on Neural Information Processing Systems (NeurIPS), pages 4955-4966, 2019. Google Scholar
  8. Andreas Bortfeldt and Gerhard Wäscher. Constraints in container loading-a state-of-the-art review. European Journal of Operational Research, 229(1):1-20, 2013. URL: https://doi.org/10.1016/j.ejor.2012.12.006.
  9. Alberto Caprara. Packing 2-dimensional bins in harmony. In FOCS, pages 490-499, 2002. URL: https://doi.org/10.1109/SFCS.2002.1181973.
  10. Alberto Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Research, 33:203-215, 2008. URL: https://doi.org/10.1287/moor.1070.0289.
  11. Chandra Chekuri and Sanjeev Khanna. On multidimensional packing problems. SIAM journal on computing, 33(4):837-851, 2004. URL: https://doi.org/10.1137/S0097539799356265.
  12. Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation and online algorithms for multidimensional bin packing: A survey. Computer Science Review, 24:63-79, 2017. URL: https://doi.org/10.1016/j.cosrev.2016.12.001.
  13. Edward G. Coffman, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo. Bin packing approximation algorithms: Survey and classification. In Handbook of combinatorial optimization, pages 455-531. Springer New York, 2013. URL: https://doi.org/10.1007/978-1-4419-7997-1_35.
  14. Edward G. Coffman, Michael R. Garey, David S. Johnson, and Robert E. Tarjan. Performance bounds for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing, 9:808-826, 1980. URL: https://doi.org/10.1137/0209062.
  15. Florian Diedrich, Rolf Harren, Klaus Jansen, Ralf Thöle, and Henning Thomas. Approximation algorithms for 3D orthogonal knapsack. Journal of Computer Science and Technology, 23(5):749, 2008. URL: https://doi.org/10.1007/s11390-008-9170-7.
  16. Khaled M. Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, and Arindam Pal. Approximation algorithms for the unsplittable flow problem on paths and trees. In FSTTCS, volume 18 of Leibniz International Proceedings in Informatics (LIPIcs), pages 267-275, 2012. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2012.267.
  17. Wenceslas Fernandez de la Vega and George S. Lueker. Bin packing can be solved within 1 + ε in linear time. Combinatorica, 1:349-355, 1981. URL: https://doi.org/10.1007/BF02579456.
  18. A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0-1 knapsack problem: worst-case and probabilistic analyses. EJOR, 15:100-109, 1984. Google Scholar
  19. Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan, and Malin Rau. A tight (3/2+ε) approximation for skewed strip packing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44.
  20. Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and Andreas Wiese. Approximating geometric knapsack via L-packings. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 260-271. IEEE, 2017. Full version available at http://www.dii.uchile.cl/~awiese/2DK_full_version.pdf. URL: https://doi.org/10.1109/FOCS.2017.32.
  21. Waldo Gálvez, Fabrizio Grandoni, Salvatore Ingala, and Arindam Khan. Improved pseudo-polynomial-time approximation for strip packing. In FSTTCS, pages 9:1-9:14, 2016. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2016.9.
  22. Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy Pittu, and Andreas Wiese. A 3-approximation algorithm for maximum independent set of rectangles. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 894-905. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.38.
  23. Waldo Gálvez, Arindam Khan, Mathieu Mari, Tobias Mömke, Madhusudhan Reddy, and Andreas Wiese. A (2+ε)-approximation algorithm for maximum independent set of rectangles, 2021. URL: http://arxiv.org/abs/2106.00623.
  24. Paul C Gilmore and Ralph E Gomory. Multistage cutting stock problems of two and more dimensions. Operations research, 13(1):94-120, 1965. URL: https://doi.org/10.1287/opre.13.1.94.
  25. Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin packing. In SODA, pages 2616-2625, 2017. URL: https://doi.org/10.1137/1.9781611974782.172.
  26. Klaus Jansen, Arindam Khan, Marvin Lira, and K. V. N. Sreenivas. A PTAS for packing hypercubes into a knapsack. In 49th International Colloquium on Automata, Languages, and Programming, ICALP, volume 229 of LIPIcs, pages 78:1-78:20, 2022. Google Scholar
  27. Klaus Jansen and Lars Prädel. New approximability results for two-dimensional bin packing. Algorithmica, 74(1):208-269, 2016. URL: https://doi.org/10.1007/s00453-014-9943-z.
  28. Klaus Jansen and Guochuan Zhang. On rectangle packing: maximizing benefits. In SODA, pages 204-213, 2004. Google Scholar
  29. D. S. Johnson. Approximation algorithms for combinatorial problems. In STOC, pages 38-49, 1973. Google Scholar
  30. David S Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Massachusetts Institute of Technology, USA, 1973. Google Scholar
  31. Matthew Joseph, Michael J. Kearns, Jamie H. Morgenstern, and Aaron Roth. Fairness in learning: Classic and contextual bandits. In NeurIPS, pages 325-333, 2016. Google Scholar
  32. Debajyoti Kar, Arindam Khan, and Andreas Wiese. Approximation algorithms for round-ufp and round-sap, 2022. URL: https://doi.org/10.48550/ARXIV.2202.03492.
  33. Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004. Google Scholar
  34. Claire Kenyon and Eric Rémila. Approximate strip packing. In 37th Annual Symposium on Foundations of Computer Science, FOCS '96, Burlington, Vermont, USA, 14-16 October, 1996, pages 31-36, 1996. URL: https://doi.org/10.1109/SFCS.1996.548461.
  35. Arindam Khan. Approximation algorithms for multidimensional bin packing. PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA, 2016. Google Scholar
  36. Arindam Khan and Madhusudhan Reddy Pittu. On guillotine separability of squares and rectangles. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.47.
  37. Arindam Khan, Eklavya Sharma, and K. V. N. Sreenivas. Approximation algorithms for generalized multidimensional knapsack, 2021. URL: http://arxiv.org/abs/2102.05854.
  38. Arindam Khan, Eklavya Sharma, and K. V. N. Sreenvas. Geometry meets vectors: Approximation algorithms for multidimensional packing, 2021. URL: http://arxiv.org/abs/2106.13951v1.
  39. Lap Chi Lau, Ramamoorthi Ravi, and Mohit Singh. Iterative methods in combinatorial optimization, volume 46. Cambridge University Press, 2011. Google Scholar
  40. Eugene L Lawler. Fast approximation algorithms for knapsack problems. Mathematics of Operations Research, 4(4):339-356, 1979. URL: https://doi.org/10.1287/moor.4.4.339.
  41. Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148-188, 1989. Google Scholar
  42. Célia Paquay, Michael Schyns, and Sabine Limbourg. A mixed integer programming formulation for the three-dimensional bin packing problem deriving from an air cargo application. International Transactions in Operational Research, 23(1-2):187-213, 2016. URL: https://doi.org/10.1111/itor.12111.
  43. Deval Patel, Arindam Khan, and Anand Louis. Group fairness for knapsack problems. In International Conference on Autonomous Agents and MultiAgent Systems (AAMAS), pages 1001-1009, 2021. Google Scholar
  44. Lars Dennis Prädel. Approximation Algorithms for Geometric Packing Problems. PhD thesis, Kiel University, 2012. URL: https://macau.uni-kiel.de/servlets/MCRFileNodeServlet/dissertation_derivate_00004634/dissertation-praedel.pdf?AC=N.
  45. Arka Ray. There is no APTAS for 2-dimensional vector bin packing: Revisited, 2021. URL: http://arxiv.org/abs/2104.13362.
  46. Sai Sandeep. Almost optimal inapproximability of multidimensional packing problems. In Symposium on Foundations of Computer Science (FOCS), pages 245-256, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00033.
  47. Eklavya Sharma. An approximation algorithm for covering linear programs and its application to bin-packing, 2020. URL: http://arxiv.org/abs/2011.11268.
  48. Knut Olav Brathaug Sørset. A heuristic approach to the three-dimensional bin packing problem with weight constraints. Master’s thesis, Høgskolen i Molde-Vitenskapelig høgskole i logistikk, 2019. Google Scholar
  49. A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing, 26(2):401-409, 1997. URL: https://doi.org/10.1137/S0097539793255801.
  50. Gregory S. Taylor, Yupo Chan, and Ghulam Rasool. A three-dimensional bin-packing model: exact multicriteria solution and computational complexity. Annals of Operations Research, 251(1-2):397-427, 2017. URL: https://doi.org/10.1007/s10479-015-2048-5.
  51. Alan Tsang, Bryan Wilder, Eric Rice, Milind Tambe, and Yair Zick. Group-fairness in influence maximization. In IJCAI, pages 5997-6005, 2019. Google Scholar
  52. Gerhard J. Woeginger. There is no asymptotic PTAS for two-dimensional vector packing. Inf. Process. Lett., 64(6):293-297, 1997. URL: https://doi.org/10.1016/S0020-0190(97)00179-8.
  53. Guang Yang. gbp: a bin packing problem solver, 2017. R package version 0.1.0.4. URL: https://CRAN.R-project.org/package=gbp.