Document Open Access Logo

Reachability Games and Friends: A Journey Through the Lens of Memory and Complexity (Invited Talk)

Authors Thomas Brihaye , Aline Goeminne, James C. A. Main, Mickael Randour



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2023.1.pdf
  • Filesize: 0.89 MB
  • 26 pages

Document Identifiers

Author Details

Thomas Brihaye
  • UMONS - Université de Mons, Belgium
Aline Goeminne
  • F.R.S.-FNRS & UMONS - Université de Mons, Belgium
James C. A. Main
  • F.R.S.-FNRS & UMONS - Université de Mons, Belgium
Mickael Randour
  • F.R.S.-FNRS & UMONS - Université de Mons, Belgium

Acknowledgements

The authors are grateful to Patricia Bouyer-Decitre for carefully reading through previous versions of this paper and providing valuable comments.

Cite AsGet BibTex

Thomas Brihaye, Aline Goeminne, James C. A. Main, and Mickael Randour. Reachability Games and Friends: A Journey Through the Lens of Memory and Complexity (Invited Talk). In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 1:1-1:26, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.1

Abstract

Reachability objectives are arguably the most basic ones in the theory of games on graphs (and beyond). But far from being bland, they constitute the cornerstone of this field. Reachability is everywhere, as are the tools we use to reason about it. In this invited contribution, we take the reader on a journey through a zoo of models that have reachability objectives at their core. Our goal is to illustrate how model complexity impacts the complexity of strategies needed to play optimally in the corresponding games and computational complexity.

Subject Classification

ACM Subject Classification
  • Software and its engineering → Formal methods
  • Theory of computation → Logic and verification
  • Theory of computation → Solution concepts in game theory
Keywords
  • Games on graphs
  • reachability
  • finite-memory strategies
  • complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eric Allender. Reachability problems: An update. In S. Barry Cooper, Benedikt Löwe, and Andrea Sorbi, editors, Computation and Logic in the Real World, Third Conference on Computability in Europe, CiE 2007, Siena, Italy, June 18-23, 2007, Proceedings, volume 4497 of Lecture Notes in Computer Science, pages 25-27. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-73001-9_3.
  2. Pranav Ashok, Mathias Jackermeier, Jan Kretínský, Christoph Weinhuber, Maximilian Weininger, and Mayank Yadav. dtControl 2.0: Explainable strategy representation via decision tree learning steered by experts. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Proceedings (Part II) of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, Held as Part of ETAPS 2021, Luxemburg City, Luxemburg, March 27-April 1, 2021, volume 12652 of Lecture Notes in Computer Science, pages 326-345. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-72013-1_17.
  3. Pranav Ashok, Jan Kretínský, Kim Guldstrand Larsen, Adrien Le Coënt, Jakob Haahr Taankvist, and Maximilian Weininger. SOS: safe, optimal and small strategies for hybrid markov decision processes. In David Parker and Verena Wolf, editors, Proceedings of the 16th International Conference on Quantitative Evaluation of Systems, QEST 2019, Glasgow, UK, September 10-12, 2019, volume 11785 of Lecture Notes in Computer Science, pages 147-164. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-30281-8_9.
  4. Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Information Processing Letters, 8(3):121-123, 1979. URL: https://doi.org/10.1016/0020-0190(79)90002-4.
  5. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, 2008. Google Scholar
  6. Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87-90, 1958. Google Scholar
  7. Nathalie Bertrand, Blaise Genest, and Hugo Gimbert. Qualitative determinacy and decidability of stochastic games with signals. Journal of the ACM, 64(5):33:1-33:48, 2017. URL: https://doi.org/10.1145/3107926.
  8. Dimitri P. Bertsekas and John N. Tsitsiklis. An analysis of stochastic shortest path problems. Mathematics of Operations Research, 16(3):580-595, 1991. URL: https://doi.org/10.1287/moor.16.3.580.
  9. Frantisek Blahoudek, Tomás Brázdil, Petr Novotný, Melkior Ornik, Pranay Thangeda, and Ufuk Topcu. Qualitative controller synthesis for consumption Markov decision processes. In Shuvendu K. Lahiri and Chao Wang, editors, Proceedings (Part II) of the 32nd International Conference on Computer Aided Verification, CAV 2020, Los Angeles, CA, USA, July 21-24, 2020, volume 12225 of Lecture Notes in Computer Science, pages 421-447. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-53291-8_22.
  10. Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove. How to play optimally for regular objectives? In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, Proceedings of the 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 118:1-118:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.118.
  11. Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Games where you can play optimally with arena-independent finite memory. Logical Methods in Computer Science, 18(1), 2022. URL: https://doi.org/10.46298/lmcs-18(1:11)2022.
  12. Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-independent finite-memory determinacy in stochastic games. In Serge Haddad and Daniele Varacca, editors, Proceedings of the 32nd International Conference on Concurrency Theory, CONCUR 2021, Virtual Conference, August 24-27, 2021, volume 203 of LIPIcs, pages 26:1-26:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2021.26.
  13. Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. The true colors of memory: A tour of chromatic-memory strategies in zero-sum games on graphs (invited talk). In Anuj Dawar and Venkatesan Guruswami, editors, Proceedings of the 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2022, IIT Madras, Chennai, India, December 18-20, 2022, volume 250 of LIPIcs, pages 3:1-3:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2022.3.
  14. Romain Brenguier. Equilibres de Nash dans les jeux concurrents : application aux jeux temporisés. (Nash equilibria in concurrent games : application to timed games). PhD thesis, École normale supérieure de Cachan, France, 2012. URL: https://tel.archives-ouvertes.fr/tel-00827027.
  15. Léonard Brice, Jean-François Raskin, and Marie van den Bogaard. On the complexity of SPEs in parity games. In Florin Manea and Alex Simpson, editors, Proceedings of the 30th EACSL Annual Conference on Computer Science Logic, CSL 2022, Göttingen, Germany, February 14-19, 2022, volume 216 of LIPIcs, pages 10:1-10:17. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CSL.2022.10.
  16. Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Jean-François Raskin. Constrained existence problem for weak subgame perfect equilibria with ω-regular Boolean objectives. Information and Computation, 278:104594, 2021. URL: https://doi.org/10.1016/j.ic.2020.104594.
  17. Thomas Brihaye, Véronique Bruyère, Aline Goeminne, Jean-François Raskin, and Marie van den Bogaard. The complexity of subgame perfect equilibria in quantitative reachability games. Logical Methods in Computer Science, 16(4), 2020. URL: https://lmcs.episciences.org/6883.
  18. Thomas Brihaye, Véronique Bruyère, Aline Goeminne, and Nathan Thomasset. On relevant equilibria in reachability games. Journal of Computer and System Sciences, 119:211-230, 2021. URL: https://doi.org/10.1016/j.jcss.2021.02.009.
  19. Thomas Brihaye, Julie De Pril, and Sven Schewe. Multiplayer cost games with simple Nash equilibria. In Sergei N. Artëmov and Anil Nerode, editors, Proceedings of the International Symposium on Logical Foundations of Computer Science, LFCS 2013, San Diego, CA, USA, January 6-8, 2013, volume 7734 of Lecture Notes in Computer Science, pages 59-73. Springer, 2013. URL: https://doi.org/10.1007/978-3-642-35722-0_5.
  20. Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To reach or not to reach? Efficient algorithms for total-payoff games. In Luca Aceto and David de Frutos-Escrig, editors, Proceedings of the 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1-4, 2015, volume 42 of LIPIcs, pages 297-310. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2015. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2015.297.
  21. Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. Pseudopolynomial iterative algorithm to solve total-payoff games and min-cost reachability games. Acta Informatica, 54(1):85-125, 2017. URL: https://doi.org/10.1007/s00236-016-0276-z.
  22. Thomas Brihaye and Aline Goeminne. Multi-weighted reachability games. CoRR, abs/2308.09625, 2023. URL: https://doi.org/10.48550/arXiv.2308.09625.
  23. Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the complexity of heterogeneous multidimensional games. In Josée Desharnais and Radha Jagadeesan, editors, Proceedings of the 27th International Conference on Concurrency Theory, CONCUR 2016, Québec City, Canada, August 23-26, 2016, volume 59 of LIPIcs, pages 11:1-11:15. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2016.11.
  24. Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger. Trading memory for randomness. In Proceedings of the 1st International Conference on Quantitative Evaluation of Systems, QEST 2004, Enschede, The Netherlands, 27-30 September 2004, pages 206-217. IEEE Computer Society, 2004. URL: https://doi.org/10.1109/QEST.2004.1348035.
  25. Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis for multi-dimensional quantitative objectives. Acta Informatica, 51(3-4):129-163, 2014. URL: https://doi.org/10.1007/s00236-013-0182-6.
  26. Stephen A. Cook. The complexity of theorem-proving procedures. In Michael A. Harrison, Ranan B. Banerji, and Jeffrey D. Ullman, editors, Proceedings of the 3rd Annual ACM Symposium on Theory of Computing, STOC 1971, Shaker Heights, Ohio, USA, May 3-5, 1971, pages 151-158. ACM, 1971. URL: https://doi.org/10.1145/800157.805047.
  27. Costas Courcoubetis and Mihalis Yannakakis. Markov decision processes and regular events. IEEE Transactions on Automatic Control, 43(10):1399-1418, 1998. URL: https://doi.org/10.1109/9.720497.
  28. Wojciech Czerwiński and Lukasz Orlikowski. Reachability in vector addition systems is Ackermann-complete. In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229-1240. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00120.
  29. Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent reachability games. Theoretical Computer Science, 386(3):188-217, 2007. URL: https://doi.org/10.1016/j.tcs.2007.07.008.
  30. Florent Delgrange, Joost-Pieter Katoen, Tim Quatmann, and Mickael Randour. Simple strategies in multi-objective MDPs. In Armin Biere and David Parker, editors, Proceedings (Part I) of the 26th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2020, Held as Part of ETAPS 2020, Dublin, Ireland, April 25-30, 2020, volume 12078 of Lecture Notes in Computer Science, pages 346-364. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-45190-5_19.
  31. Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959. URL: https://doi.org/10.1007/BF01386390.
  32. Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed to win infinite games? In Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, LICS 1997, Warsaw, Poland, June 29 - July 2, 1997, pages 99-110. IEEE Computer Society, 1997. URL: https://doi.org/10.1109/LICS.1997.614939.
  33. Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis. Multi-objective model checking of Markov decision processes. Logical Methods in Computer Science, 4(4), 2008. URL: https://doi.org/10.2168/LMCS-4(4:8)2008.
  34. Nathanaël Fijalkow, Nathalie Bertrand, Patricia Bouyer-Decitre, Romain Brenguier, Arnaud Carayol, John Fearnley, Hugo Gimbert, Florian Horn, Rasmus Ibsen-Jensen, Nicolas Markey, Benjamin Monmege, Petr Novotný, Mickael Randour, Ocan Sankur, Sylvain Schmitz, Olivier Serre, and Mateusz Skomra. Games on graphs. CoRR, abs/2305.10546, 2023. URL: https://doi.org/10.48550/arXiv.2305.10546.
  35. Nathanaël Fijalkow and Florian Horn. The surprizing complexity of reachability games. CoRR, abs/1010.2420, 2010. URL: https://doi.org/10.48550/arXiv.1010.2420.
  36. Nathanaël Fijalkow and Florian Horn. Les jeux d'accessibilité généralisée. Technique et Science Informatiques, 32(9-10):931-949, 2013. URL: https://doi.org/10.3166/tsi.32.931-949.
  37. Robert W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962. URL: https://doi.org/10.1145/367766.368168.
  38. Lester R. Ford. Network flow theory. Paper P-923, The RAND Corporation, Santa Monica, California, August 14, 1956. URL: http://www.rand.org/pubs/papers/P923.html.
  39. James Friedman. A non-cooperative equilibrium for supergames. Review of Economic Studies, 38(1):1-12, 1971. URL: https://EconPapers.repec.org/RePEc:oup:restud:v:38:y:1971:i:1:p:1-12.
  40. Drew Fudenberg and David Levine. Subgame-perfect equilibria of finite-and infinite-horizon games. Journal of Economic Theory, 31(2):251-268, 1983. Google Scholar
  41. Marcus Gelderie. Strategy machines: representation and complexity of strategies in infinite games. PhD thesis, RWTH Aachen University, 2014. URL: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/5025.
  42. Hugo Gimbert and Wiesław Zielonka. Games where you can play optimally without any memory. In Martín Abadi and Luca de Alfaro, editors, Proceedings of the 16th International Conference on Concurrency Theory, CONCUR 2005, San Francisco, CA, USA, August 23-26, 2005, volume 3653 of Lecture Notes in Computer Science, pages 428-442. Springer, 2005. URL: https://doi.org/10.1007/11539452_33.
  43. Hugo Gimbert and Wiesław Zielonka. Pure and Stationary Optimal Strategies in Perfect-Information Stochastic Games with Global Preferences. Unpublished, 2009. URL: https://hal.archives-ouvertes.fr/hal-00438359.
  44. Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002. URL: https://doi.org/10.1007/3-540-36387-4.
  45. Christoph Haase and Stefan Kiefer. The odds of staying on budget. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Proceedings (Part II) of the 42nd International Colloquium on Automata, Languages, and Programming, ICALP 2015, Kyoto, Japan, July 6-10, 2015, volume 9135 of Lecture Notes in Computer Science, pages 234-246. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-47666-6_19.
  46. Florian Horn. Random fruits on the Zielonka tree. In Susanne Albers and Jean-Yves Marion, editors, Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, Freiburg, Germany, February 26-28, 2009, volume 3 of LIPIcs, pages 541-552. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, Germany, 2009. URL: https://doi.org/10.4230/LIPIcs.STACS.2009.1848.
  47. Rasmus Ibsen-Jensen. Concurrent games. In Nathanaël Fijalkow, editor, Games on Graphs. arXiv, 2023. Google Scholar
  48. Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer and System Sciences, 22(3):384-406, 1981. URL: https://doi.org/10.1016/0022-0000(81)90039-8.
  49. Neil D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Computer and System Sciences, 11(1):68-85, 1975. URL: https://doi.org/10.1016/S0022-0000(75)80050-X.
  50. Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich, Gábor Rudolf, and Jihui Zhao. On short paths interdiction problems: Total and node-wise limited interdiction. Theory of Computing Systems, 43(2):204-233, 2008. URL: https://doi.org/10.1007/s00224-007-9025-6.
  51. Stephen Cole Kleene. Representation of events in nerve nets and finite automata. C. E. Shannon and J. McCarthy (ed.). Automata Studies. Princeton University Press, pages 3-42, 1956. Google Scholar
  52. François Laroussinie, Nicolas Markey, and Ghassan Oreiby. Model-checking timed ATL for durational concurrent game structures. In Eugene Asarin and Patricia Bouyer, editors, Proceedings of the 4th International Conference on Formal Modeling and Analysis of Timed Systems, FORMATS 2006, Paris, France, September 25-27, 2006, volume 4202 of Lecture Notes in Computer Science, pages 245-259. Springer, 2006. URL: https://doi.org/10.1007/11867340_18.
  53. Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya, editors, Proceedings of the 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, Ahmedabad, India, December 11-13, 2018, volume 122 of LIPIcs, pages 38:1-38:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38.
  54. Jérôme Leroux. The reachability problem for Petri nets is not primitive recursive. In Proceedings of the 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1241-1252. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00121.
  55. James C. A. Main. Arena-independent memory bounds for nash equilibria in reachability games. CoRR, abs/2310.02142, 2023. URL: https://doi.org/10.48550/arXiv.2310.02142.
  56. James C. A. Main and Mickael Randour. Different strokes in randomised strategies: Revisiting Kuhn’s theorem under finite-memory assumptions. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors, Proceedings of the 33rd International Conference on Concurrency Theory, CONCUR 2022, Warsaw, Poland, September 12-16, 2022, volume 243 of LIPIcs, pages 22:1-22:18. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2022.22.
  57. Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., USA, 1967. Google Scholar
  58. Benjamin Monmege, Julie Parreaux, and Pierre-Alain Reynier. Reaching your goal optimally by playing at random with no memory. In Igor Konnov and Laura Kovács, editors, Proceedings of the 31st International Conference on Concurrency Theory, CONCUR 2020, Vienna, Austria, September 1-4, 2020, volume 171 of LIPIcs, pages 26:1-26:21. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2020.26.
  59. Martin J. Osborne and Ariel Rubinstein. A course in game theory. The MIT Press, 1994. Google Scholar
  60. Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994. Google Scholar
  61. Mickael Randour. Games with multiple objectives. In Nathanaël Fijalkow, editor, Games on Graphs. arXiv, 2023. Google Scholar
  62. Mickael Randour, Jean-François Raskin, and Ocan Sankur. Percentile queries in multi-dimensional Markov decision processes. Formal methods in system design, 50(2-3):207-248, 2017. URL: https://doi.org/10.1007/s10703-016-0262-7.
  63. Stéphane Le Roux and Arno Pauly. Extending finite-memory determinacy to multi-player games. Information and Computation, 261:676-694, 2018. URL: https://doi.org/10.1016/j.ic.2018.02.024.
  64. Bernard Roy. Transitivité et connexité. Comptes Rendus de l'Académie des Sciences Paris, 249:216-218, 1959. Google Scholar
  65. Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972. URL: https://doi.org/10.1137/0201010.
  66. Wolfgang Thomas. On the synthesis of strategies in infinite games. In Ernst W. Mayr and Claude Puech, editors, Proceedings of the 12th Annual Symposium on Theoretical Aspects of Computer Science, STACS 1995, Munich, Germany, March 2-4, 1995, volume 900 of Lecture Notes in Computer Science, pages 1-13. Springer, 1995. URL: https://doi.org/10.1007/3-540-59042-0_57.
  67. Stephen D. Travers. The complexity of membership problems for circuits over sets of integers. Theoretical Computer Science, 369(1-3):211-229, 2006. URL: https://doi.org/10.1016/j.tcs.2006.08.017.
  68. Alan M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230-265, 1937. URL: https://doi.org/10.1112/plms/s2-42.1.230.
  69. Michael Ummels. Rational behaviour and strategy construction in infinite multiplayer games. In S. Arun-Kumar and Naveen Garg, editors, Proceedings of the 26th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FST TCS 2006, Kolkata, India, December 13-15, 2006, volume 4337 of Lecture Notes in Computer Science, pages 212-223. Springer, 2006. URL: https://doi.org/10.1007/11944836_21.
  70. Michael Ummels. The complexity of Nash equilibria in infinite multiplayer games. In Roberto M. Amadio, editor, Proceedings of the 11th International Conference on Foundations of Software Science and Computational Structures, FoSSaCS 2008, Held as Part of ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008, volume 4962 of Lecture Notes in Computer Science, pages 20-34. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-78499-9_3.
  71. Igor Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation, 164(2):234-263, 2001. URL: https://doi.org/10.1006/inco.2000.2894.
  72. Stephen Warshall. A theorem on Boolean matrices. Journal of the ACM, 9(1):11-12, 1962. URL: https://doi.org/10.1145/321105.321107.
  73. Avi Wigderson. The complexity of graph connectivity. In Ivan M. Havel and Václav Koubek, editors, Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science, MFCS 1992, Prague, zechoslovakia, August 24-28, 1992, volume 629 of Lecture Notes in Computer Science, pages 112-132. Springer, 1992. URL: https://doi.org/10.1007/3-540-55808-X_10.
  74. James Worrell. The Skolem landscape (invited talk). In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, Proceedings of the 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 5:1-5:2. Schloss Dagstuhl -Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ICALP.2023.5.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail