This paper studies the complexity of operations on finite automata and the complexity of their decision problems when the alphabet is unary and n the number of states of the finite automata considered. The following main results are obtained: 1) Equality and inclusion of NFAs can be decided within time 2^O((n log n)^{1/3}); previous upper bound 2^O((n log n)^{1/2}) was by Chrobak (1986) via DFA conversion. 2) The state complexity of operations of UFAs (unambiguous finite automata) increases for complementation and union at most by quasipolynomial; however, for concatenation of two n-state UFAs, the worst case is an UFA of at least 2^Ω(n^{1/6}) states. Previously the upper bounds for complementation and union were exponential-type and this lower bound for concatenation is new.
@InProceedings{czerwinski_et_al:LIPIcs.FSTTCS.2023.22, author = {Czerwi\'{n}ski, Wojciech and D\k{e}bski, Maciej and Gogasz, Tomasz and Hoi, Gordon and Jain, Sanjay and Skrzypczak, Micha{\l} and Stephan, Frank and Tan, Christopher}, title = {{Languages Given by Finite Automata over the Unary Alphabet}}, booktitle = {43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)}, pages = {22:1--22:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-304-1}, ISSN = {1868-8969}, year = {2023}, volume = {284}, editor = {Bouyer, Patricia and Srinivasan, Srikanth}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.22}, URN = {urn:nbn:de:0030-drops-193959}, doi = {10.4230/LIPIcs.FSTTCS.2023.22}, annote = {Keywords: Nondeterministic Finite Automata, Unambiguous Finite Automata, Upper Bounds on Runtime, Conditional Lower Bounds, Languages over the Unary Alphabet} }
Feedback for Dagstuhl Publishing