Bounded Simultaneous Messages

Authors Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan, Sruthi Sekar



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2023.23.pdf
  • Filesize: 0.74 MB
  • 17 pages

Document Identifiers

Author Details

Andrej Bogdanov
  • School of EECS, University of Ottawa, Canada
Krishnamoorthy Dinesh
  • Dept. of Computer Science and Engineering, Indian Institute of Technology, Palakkad, India
Yuval Filmus
  • The Henry and Marylin Taub Faculty of Computer Science, Technion, Haifa, Israel
Yuval Ishai
  • The Henry and Marylin Taub Faculty of Computer Science, Technion, Haifa, Israel
Avi Kaplan
  • The Henry and Marylin Taub Faculty of Computer Science, Technion, Haifa, Israel
Sruthi Sekar
  • University of California, Berkeley, CA, USA

Acknowledgements

The authors would like to thanks the anonymous reviewers for their comments.

Cite AsGet BibTex

Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan, and Sruthi Sekar. Bounded Simultaneous Messages. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 23:1-23:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
https://doi.org/10.4230/LIPIcs.FSTTCS.2023.23

Abstract

We consider the following question of bounded simultaneous messages (BSM) protocols: Can computationally unbounded Alice and Bob evaluate a function f(x,y) of their inputs by sending polynomial-size messages to a computationally bounded Carol? The special case where f is the mod-2 inner-product function and Carol is bounded to AC⁰ has been studied in previous works. The general question can be broadly motivated by applications in which distributed computation is more costly than local computation. In this work, we initiate a more systematic study of the BSM model, with different functions f and computational bounds on Carol. In particular, we give evidence against the existence of BSM protocols with polynomial-size Carol for naturally distributed variants of NP-complete languages.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational complexity and cryptography
  • Theory of computation → Probabilistic computation
Keywords
  • Simultaneous Messages
  • Instance Hiding
  • Algebraic degree
  • Preprocessing
  • Lower Bounds

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Scott Aaronson and Avi Wigderson. Algebrization: a new barrier in complexity theory. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 731-740, 2008. URL: https://doi.org/10.1145/1374376.1374481.
  2. Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10-13, 2021, pages 522-539, 2021. URL: https://doi.org/10.1137/1.9781611976465.32.
  3. Andris Ambainis and Satyanarayana V. Lokam. Improved upper bounds on the simultaneous messages complexity of the generalized addressing function. In LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, volume 1776 of Lecture Notes in Computer Science, pages 207-216, 2000. URL: https://doi.org/10.1007/10719839_21.
  4. László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Communication complexity of simultaneous messages. SIAM J. Comput., 33(1):137-166, 2003. URL: https://doi.org/10.1137/S0097539700375944.
  5. Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In STACS 90, 7th Annual Symposium on Theoretical Aspects of Computer Science, Rouen, France, February 22-24, 1990, Proceedings, pages 37-48, 1990. URL: https://doi.org/10.1007/3-540-52282-4_30.
  6. Donald Beaver, Joan Feigenbaum, Joe Kilian, and Phillip Rogaway. Locally random reductions: Improvements and applications. J. Cryptol., 10(1):17-36, 1997. URL: https://doi.org/10.1007/s001459900017.
  7. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 1-10, 1988. URL: https://doi.org/10.1145/62212.62213.
  8. Andrej Bogdanov, Krishnamoorthy Dinesh, Yuval Filmus, Yuval Ishai, Avi Kaplan, and Sruthi Sekar. Bounded simultaneous messages, 2023. URL: https://arxiv.org/abs/2310.00334.
  9. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe. SIAM J. Comput., 43(2):831-871, 2014. URL: https://doi.org/10.1137/120868669.
  10. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 11-19, 1988. URL: https://doi.org/10.1145/62212.62214.
  11. Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In 36th Annual Symposium on Foundations of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 41-50, 1995. URL: https://doi.org/10.1109/SFCS.1995.492461.
  12. Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages 47-58, 2016. URL: https://doi.org/10.1145/2840728.2840734.
  13. Don Coppersmith and Shmuel Winograd. On the asymptotic complexity of matrix multiplication (extended summary). In 22nd Annual Symposium on Foundations of Computer Science, Nashville, Tennessee, USA, 28-30 October 1981, pages 82-90, 1981. URL: https://doi.org/10.1109/SFCS.1981.27.
  14. A. M. Davie and A. J. Stothers. Improved bound for complexity of matrix multiplication. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 143(2):351-369, 2013. URL: https://doi.org/10.1017/S0308210511001648.
  15. Amos Fiat and Moni Naor. Rigorous time/space trade-offs for inverting functions. SIAM Journal on Computing, 29(3):790-803, 2000. URL: https://doi.org/10.1137/S0097539795280512.
  16. Yuval Filmus, Yuval Ishai, Avi Kaplan, and Guy Kindler. Limits of preprocessing. In 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 17:1-17:22, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.17.
  17. Lance Fortnow and Mario Szegedy. On the power of two-local random reductions. In Advances in Cryptology - ASIACRYPT '91, International Conference on the Theory and Applications of Cryptology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings, volume 739 of Lecture Notes in Computer Science, pages 346-351, 1991. URL: https://doi.org/10.1007/3-540-57332-1_29.
  18. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169-178. ACM, 2009. URL: https://doi.org/10.1145/1536414.1536440.
  19. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New York, USA, pages 218-229, 1987. URL: https://doi.org/10.1145/28395.28420.
  20. Vince Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit ramsey graphs. Comb., 20(1):71-86, 2000. URL: https://doi.org/10.1007/s004930070032.
  21. M. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Information Theory, 26(4):401-406, 1980. URL: https://doi.org/10.1109/TIT.1980.1056220.
  22. Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack problem. J. ACM, 21(2):277-292, April 1974. URL: https://doi.org/10.1145/321812.321823.
  23. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In David A. Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages 572-591. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-85174-5_32.
  24. Stasys Jukna. On graph complexity. Comb. Probab. Comput., 15(6):855-876, 2006. URL: https://doi.org/10.1017/S0963548306007620.
  25. Joe Kilian. Founding cryptography on oblivious transfer. In Janos Simon, editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 20-31. ACM, 1988. URL: https://doi.org/10.1145/62212.62215.
  26. Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on Computing, 31(5):1501-1526, 2002. URL: https://doi.org/10.1137/S0097539700389652.
  27. Satyanarayana V. Lokam. Graph complexity and slice functions. Theory Comput. Syst., 36(1):71-88, 2003. URL: https://doi.org/10.1007/s00224-002-1068-0.
  28. Satyanarayana V. Lokam. Complexity lower bounds using linear algebra. Found. Trends Theor. Comput. Sci., 4(1-2):1-155, 2009. URL: https://doi.org/10.1561/0400000011.
  29. Jesper Nederlof and Karol Wegrzycki. Improving Schroeppel and Shamir’s algorithm for subset sum via orthogonal vectors. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages 1670-1683, New York, NY, USA, 2021. Association for Computing Machinery. URL: https://doi.org/10.1145/3406325.3451024.
  30. Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM Journal on Computing, 22(1):211-219, 1993. URL: https://doi.org/10.1137/0222016.
  31. P. Odifreddi. Classical Recursion Theory: The Theory of Functions and Sets of Natural Numbers. ISSN. Elsevier Science, 1992. URL: https://books.google.co.in/books?id=ahBLqshTFMwC.
  32. Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for depth three boolean circuits. Comput. Complex., 9(1):1-15, 2000. URL: https://doi.org/10.1007/PL00001598.
  33. Pavel Pudlák, Vojtech Rödl, and Petr Savický. Graph complexity. Acta Informatica, 25(5):515-535, 1988. URL: https://doi.org/10.1007/BF00279952.
  34. Pavel Pudlák, Vojtech Rödl, and Jirí Sgall. Boolean circuits, tensor ranks, and communication complexity. SIAM Journal on Computing, 26(3):605-633, 1997. URL: https://doi.org/10.1137/S0097539794264809.
  35. Alexander A. Razborov and Steven Rudich. Natural proofs. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 204-213, 1994. URL: https://doi.org/10.1145/195058.195134.
  36. Guy N. Rothblum. How to compute under AC⁰ leakage without secure hardware. In Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 552-569, 2012. URL: https://doi.org/10.1007/978-3-642-32009-5_32.
  37. Richard Schroeppel and Adi Shamir. A T = O(2^n/2), S = O(2^n/4) algorithm for certain NP-complete problems. SIAM Journal on Computing, 10:456-464, 1981. Google Scholar
  38. Ronen Shaltiel and Christopher Umans. Pseudorandomness for approximate counting and sampling. computational complexity, 15(4):298-341, 2006. Google Scholar
  39. Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13(4):354-356, August 1969. URL: https://doi.org/10.1007/bf02165411.
  40. Avishay Tal. Formula lower bounds via the quantum method. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1256-1268, 2017. URL: https://doi.org/10.1145/3055399.3055472.
  41. Rahul Tripathi. On the computational power of locally random reductions. A preliminary version appeared in MFCS 2007, 2010. URL: https://api.semanticscholar.org/CorpusID:17801736.
  42. Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (preliminary report). In Proceedings of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209-213, 1979. URL: https://doi.org/10.1145/800135.804414.
  43. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages 162-167, 1986. URL: https://doi.org/10.1109/SFCS.1986.25.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail