Document Open Access Logo

FPT Approximations for Packing and Covering Problems Parameterized by Elimination Distance and Even Less

Authors Tanmay Inamdar , Lawqueen Kanesh, Madhumita Kundu , M. S. Ramanujan , Saket Saurabh

Thumbnail PDF


  • Filesize: 0.83 MB
  • 16 pages

Document Identifiers

Author Details

Tanmay Inamdar
  • University of Bergen, Norway
Lawqueen Kanesh
  • Indian Institute of Technology Jodhpur, India
Madhumita Kundu
  • University of Bergen, Norway
M. S. Ramanujan
  • University of Warwick, Coventry, UK
Saket Saurabh
  • Institute of Mathematical Sciences, Chennai, India
  • University of Bergen, Norway

Cite AsGet BibTex

Tanmay Inamdar, Lawqueen Kanesh, Madhumita Kundu, M. S. Ramanujan, and Saket Saurabh. FPT Approximations for Packing and Covering Problems Parameterized by Elimination Distance and Even Less. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 28:1-28:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


For numerous graph problems in the realm of parameterized algorithms, using the size of a smallest deletion set (called a modulator) into well-understood graph families as parameterization has led to a long and successful line of research. Recently, however, there has been an extensive study of structural parameters that are potentially much smaller than the modulator size. In particular, recent papers [Jansen et al. STOC 2021; Agrawal et al. SODA 2022] have studied parameterization by the size of the modulator to a graph family ℋ(mod_ℋ(⋅)), elimination distance to ℋ(ed_ℋ(⋅)), and ℋ-treewidth (tw_ℋ(⋅)). These parameters are related by the fact that tw_ℋ lower bounds ed_ℋ, which in turn lower bounds mod_ℋ. While these new parameters have been successfully exploited to design fast exact algorithms their utility (especially that of ed_ℋ and tw_ℋ) in the context of approximation algorithms is mostly unexplored. The conceptual contribution of this paper is to present novel algorithmic meta-theorems that expand the impact of these structural parameters to the area of FPT Approximation, mirroring their utility in the design of exact FPT algorithms. Precisely, we show that if a covering or packing problem is definable in Monadic Second Order Logic and has a property called Finite Integer Index (FII), then the existence of an FPT Approximation Scheme (FPT-AS, i.e., (1±ε)-approximation) parameterized by mod_ℋ(⋅), ed_ℋ(⋅), and tw_ℋ(⋅) is in fact equivalent. As a consequence, we obtain FPT-ASes for a wide range of covering, packing, and domination problems on graphs with respect to these parameters. In the process, we show that several graph problems, that are W[1]-hard parameterized by mod_ℋ, admit FPT-ASes not only when parameterized by mod_ℋ, but even when parameterized by the potentially much smaller parameter tw_ℋ(⋅). In the spirit of [Agrawal et al. SODA 2022], our algorithmic results highlight a broader connection between these parameters in the world of approximation. As concrete exemplifications of our meta-theorems, we obtain FPT-ASes for well-studied graph problems such as Vertex Cover, Feedback Vertex Set, Cycle Packing and Dominating Set, parameterized by tw_ℋ(⋅) (and hence, also by mod_ℋ(⋅) or ed_ℋ(⋅)), where ℋ is any family of minor free graphs.

Subject Classification

ACM Subject Classification
  • Theory of computation → Parameterized complexity and exact algorithms
  • Theory of computation → Approximation algorithms analysis
  • FPT-AS
  • F-Deletion
  • Packing
  • Elimination Distance
  • Elimination Treewidth


  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    PDF Downloads


  1. Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Deleting, eliminating and decomposing to hereditary classes are all FPT-equivalent. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1976-2004, 2022. URL:
  2. Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to bounded degree. Algorithmica, 75(2):363-382, 2016. URL:
  3. Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite graphs. Inf. Comput., 85(1):12-75, 1990. URL:
  4. Erik D. Demaine, Timothy D. Goodrich, Kyle Kloster, Brian Lavallee, Quanquan C. Liu, Blair D. Sullivan, Ali Vakilian, and Andrew van der Poel. Structural rounding: Approximation algorithms for graphs near an algorithmically tractable class. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 37:1-37:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL:
  5. Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146, 2020. URL:
  6. Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-deletion: Approximation, kernelization and optimal FPT algorithms. In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 470-479. IEEE Computer Society, 2012. URL:
  7. Fedor V. Fomin, Daniel Lokshtanov, and Saket Saurabh. Excluded grid minors and efficient polynomial-time approximation schemes. J. ACM, 65(2):10:1-10:44, 2018. URL:
  8. Fedor V Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of parameterized preprocessing. Cambridge University Press, 2019. Google Scholar
  9. Robert Ganian, M. S. Ramanujan, and Stefan Szeider. Combining treewidth and backdoors for CSP. In Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 36:1-36:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL:
  10. M. R. Garey and David S. Johnson. The rectilinear steiner tree problem is NP complete. SIAM Journal of Applied Mathematics, 32:826-834, 1977. Google Scholar
  11. Michel X. Goemans and David P. Williamson. Primal-dual approximation algorithms for feedback problems in planar graphs. Comb., 18(1):37-59, 1998. URL:
  12. Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems: Distance from triviality. In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne, editors, Parameterized and Exact Computation, First International Workshop, IWPEC 2004, Bergen, Norway, September 14-17, 2004, Proceedings, volume 3162 of Lecture Notes in Computer Science, pages 162-173. Springer, 2004. URL:
  13. Tanmay Inamdar, Lawqueen Kanesh, Madhumita Kundu, M. S. Ramanujan, and Saket Saurabh. Fpt approximations for packing and covering problems parameterized by elimination distance and even less, 2023. URL:
  14. Bart M. P. Jansen and Jari J. H. de Kroon. FPT algorithms to compute the elimination distance to bipartite graphs and more. In Lukasz Kowalik, Michal Pilipczuk, and Pawel Rzazewski, editors, Graph-Theoretic Concepts in Computer Science - 47th International Workshop, WG 2021, Warsaw, Poland, June 23-25, 2021, Revised Selected Papers, volume 12911 of Lecture Notes in Computer Science, pages 80-93. Springer, 2021. URL:
  15. Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Vertex deletion parameterized by elimination distance and even less. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1757-1769. ACM, 2021. URL:
  16. Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. 5-approximation for ℋ-treewidth essentially as fast as ℋ-deletion parameterized by solution size. In Inge Li Gørtz, Martin Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages 66:1-66:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL:
  17. Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi. A framework for approximation schemes on disk graphs. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages 2228-2241. SIAM, 2023. URL:
  18. Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60-78, 2008. URL:
  19. Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Faster parameterized algorithms for modification problems to minor-closed classes. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 93:1-93:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL:
  20. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Oper. Res. Lett., 32(4):299-301, 2004. URL:
Questions / Remarks / Feedback

Feedback for Dagstuhl Publishing

Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail