PosSLP and Sum of Squares

Authors Markus Bläser , Julian Dörfler , Gorav Jindal



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.13.pdf
  • Filesize: 0.77 MB
  • 18 pages

Document Identifiers

Author Details

Markus Bläser
  • Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Julian Dörfler
  • Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
Gorav Jindal
  • Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Acknowledgements

We would like to thank Robert Andrews for providing a simpler proof of Lemma 2.6. We had a proof of it that was a bit longer. Robert Andrews simplified the proof after reviewing our proof in a personal communication.

Cite As Get BibTex

Markus Bläser, Julian Dörfler, and Gorav Jindal. PosSLP and Sum of Squares. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.13

Abstract

The problem PosSLP is the problem of determining whether a given straight-line program (SLP) computes a positive integer. PosSLP was introduced by Allender et al. to study the complexity of numerical analysis (Allender et al., 2009). PosSLP can also be reformulated as the problem of deciding whether the integer computed by a given SLP can be expressed as the sum of squares of four integers, based on the well-known result by Lagrange in 1770, which demonstrated that every natural number can be represented as the sum of four non-negative integer squares.
In this paper, we explore several natural extensions of this problem by investigating whether the positive integer computed by a given SLP can be written as the sum of squares of two or three integers. We delve into the complexity of these variations and demonstrate relations between the complexity of the original PosSLP problem and the complexity of these related problems. Additionally, we introduce a new intriguing problem called Div2SLP and illustrate how Div2SLP is connected to DegSLP and the problem of whether an SLP computes an integer expressible as the sum of three squares.
By comprehending the connections between these problems, our results offer a deeper understanding of decision problems associated with SLPs and open avenues for further exciting research.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity classes
  • Theory of computation → Algebraic complexity theory
  • Theory of computation → Problems, reductions and completeness
Keywords
  • PosSLP
  • Straight-line program
  • Polynomial identity testing
  • Sum of squares

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On the complexity of numerical analysis. SIAM Journal on Computing, 38(5):1987-2006, 2009. URL: https://doi.org/10.1137/070697926.
  2. Eric Allender, Michal Koucký, Detlef Ronneburger, Sambuddha Roy, and V. Vinay. Time-space tradeoffs in the counting hierarchy. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 295-302. IEEE Computer Society, 2001. URL: https://doi.org/10.1109/CCC.2001.933896.
  3. N. C. Ankeny. Sums of three squares. Proceedings of the American Mathematical Society, 8(2):316-319, 1957. URL: https://doi.org/10.1090/s0002-9939-1957-0085275-8.
  4. Saugata Basu, Richard Leroy, and Marie-Francoise Roy. A bound on the minimum of a real positive polynomial over the standard simplex, 2009. URL: https://arxiv.org/abs/0902.3304.
  5. Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer-Verlag, Berlin, Heidelberg, 1997. Google Scholar
  6. Markus Bläser, Julian Dörfler, and Gorav Jindal. Posslp and sum of squares, 2024. URL: https://doi.org/10.48550/arXiv.2403.00115.
  7. R. Breusch. Zur verallgemeinerung des bertrandschen postulates, dass zwischen x und 2x stets primzahlen liegen. Mathematische Zeitschrift, 34:505-526, 1932. URL: http://eudml.org/doc/168326.
  8. Peter Bürgisser and Felipe Cucker. Counting complexity classes for numeric computations ii: Algebraic and semialgebraic sets. Journal of Complexity, 22(2):147-191, 2006. URL: https://doi.org/10.1016/j.jco.2005.11.001.
  9. Peter Bürgisser and Gorav Jindal. On the Hardness of PosSLP, pages 1872-1886. Society for Industrial and Applied Mathematics, 2024. URL: https://doi.org/10.1137/1.9781611977912.75.
  10. Pierre Debes and Yann Walkowiak. Bounds for hilbert’s irreducibility theorem. Pure and Applied Mathematics Quarterly, 4(4):1059-1083, 2008. URL: https://doi.org/10.4310/pamq.2008.v4.n4.a4.
  11. U. Dudley. Elementary Number Theory: Second Edition. Dover Books on Mathematics. Dover Publications, 2012. Google Scholar
  12. Pranjal Dutta, Gorav Jindal, Anurag Pandey, and Amit Sinhababu. Arithmetic Circuit Complexity of Division and Truncation. In Valentine Kabanets, editor, 36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1-25:36, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CCC.2021.25.
  13. Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the roots: Uniform closure results for algebraic classes under factoring. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 1152-1165, New York, NY, USA, 2018. Association for Computing Machinery. URL: https://doi.org/10.1145/3188745.3188760.
  14. Landau Edmund. Über die darstellung definiter funktionen durch quadrate. Mathematische Annalen, 62:272-285, 1906. URL: http://eudml.org/doc/158257.
  15. C.F. Gauss. Disquisitiones arithmeticae. Apud G. Fleischer, 1801. URL: https://books.google.de/books?id=OwX6GwAACAAJ.
  16. David R. Hilbert. Beweis für die darstellbarkeit der ganzen zahlen durch eine feste anzahlnter potenzen (waringsches problem). Mathematische Annalen, 67:281-300, 1909. Google Scholar
  17. Gorav Jindal and Louis Gaillard. On the order of power series and the sum of square roots problem. In Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation, ISSAC '23, pages 354-362, New York, NY, USA, 2023. Association for Computing Machinery. URL: https://doi.org/10.1145/3597066.3597079.
  18. E. Kaltofen. Single-factor hensel lifting and its application to the straight-line complexity of certain polynomials. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC '87, pages 443-452, New York, NY, USA, 1987. Association for Computing Machinery. URL: https://doi.org/10.1145/28395.28443.
  19. Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial identity testing and deterministic multivariate polynomial factorization. In 2014 IEEE 29th Conference on Computational Complexity (CCC), pages 169-180. IEEE, 2014. URL: https://doi.org/10.1109/CCC.2014.25.
  20. Alexei Kourbatov. On the distribution of maximal gaps between primes in residue classes, 2018. URL: https://arxiv.org/abs/1610.03340.
  21. E. Landau. Über die einteilung der positiven ganzen zahlen in vier klassen nach der mindestzahl der zu ihrer additiven zusammensetzung erforderlichen quadrate. Arch. Math. und Physik (3), 13, 1908. Google Scholar
  22. Edmund Landau. Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderliche Quadrate, 1908. URL: https://books.google.de/books?id=e3XBnQAACAAJ.
  23. Adrien Marie Legendre. Essai Sur La Théorie Des Nombres. Duprat, 1797. URL: http://eudml.org/doc/204253.
  24. Gregorio Malajovich. An effective version of kronecker’s theorem on simultaneous diophantine approximation. Technical report, Citeseer, 1996. Google Scholar
  25. LJ Mordell. On the representation of a number as a sum of three squares. Rev. Math. Pures Appl, 3:25-27, 1958. Google Scholar
  26. M Ram Murty. Polynomials assuming square values. Number theory and discrete geometry, pages 155-163, 2008. Google Scholar
  27. Ivan Niven, Herbert S. Zuckerman, and Hugh L. Montgomery. An Introduction to the Theory of Numbers. Wiley, hardcover edition, January 1991. URL: https://lead.to/amazon/com/?op=bt&la=en&cu=usd&key=0471625469.
  28. Daniel Perrucci and Juan Sabia. Real roots of univariate polynomials and straight line programs. Journal of Discrete Algorithms, 5(3):471-478, 2007. Selected papers from Ad Hoc Now 2005. URL: https://doi.org/10.1016/j.jda.2006.10.002.
  29. Walter L. Ruzzo. On uniform circuit complexity. J. Comput. Syst. Sci., 22(3):365-383, 1981. URL: https://doi.org/10.1016/0022-0000(81)90038-6.
  30. Yaroslav Shitov. How hard is the tensor rank?, 2016. URL: https://arxiv.org/abs/1611.01559.
  31. Prasoon Tiwari. A problem that is easier to solve on the unit-cost algebraic ram. Journal of Complexity, 8(4):393-397, 1992. URL: https://doi.org/10.1016/0885-064X(92)90003-T.
  32. Yann Walkowiak. Théorème d'irréductibilité de hilbert effectif. Acta Arithmetica, 116(4):343-362, 2005. URL: http://eudml.org/doc/277977.
  33. Pourchet Y. Sur la représentation en somme de carrés des polynômes à une indéterminée sur un corps de nombres algébriques. Acta Arithmetica, 19(1):89-104, 1971. URL: http://eudml.org/doc/205020.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail