Unifying Asynchronous Logics for Hyperproperties

Authors Alberto Bombardelli , Laura Bozzelli , César Sánchez , Stefano Tonetta



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.14.pdf
  • Filesize: 0.88 MB
  • 18 pages

Document Identifiers

Author Details

Alberto Bombardelli
  • Fondazione Bruno Kessler, Trento, Italy
Laura Bozzelli
  • University of Napoli "Federico II", Italy
César Sánchez
  • IMDEA Software Institute, Madrid, Spain
Stefano Tonetta
  • Fondazione Bruno Kessler, Trento, Italy

Cite As Get BibTex

Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta. Unifying Asynchronous Logics for Hyperproperties. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.14

Abstract

We introduce and investigate a powerful hyper logical framework in the linear-time setting that we call generalized HyperLTL with stuttering and contexts (GHyperLTL_{S+C}} for short). GHyperLTL_{S+C} unifies the asynchronous extensions of HyperLTL called HyperLTL_S and HyperLTL_C, and the well-known extension KLTL of LTL with knowledge modalities under both the synchronous and asynchronous perfect recall semantics. As a main contribution, we identify a meaningful fragment of GHyperLTL_{S+C}, that we call simple GHyperLTL_{S+C}, with a decidable model-checking problem, which is more expressive than HyperLTL and known fragments of asynchronous extensions of HyperLTL with a decidable model-checking problem. Simple GHyperLTL_{S+C} subsumes KLTL under the synchronous semantics and the one-agent fragment of KLTL under the asynchronous semantics and to the best of our knowledge, it represents the unique hyper logic with a decidable model-checking problem which can express powerful non-regular trace properties when interpreted on singleton sets of traces. We justify the relevance of simple GHyperLTL_{S+C} by showing that it can express diagnosability properties, interesting classes of information-flow security policies, both in the synchronous and asynchronous settings, and bounded termination (more in general, global promptness in the style of Prompt LTL).

Subject Classification

ACM Subject Classification
  • Theory of computation → Logic and verification
Keywords
  • Asynchronous hyperproperties
  • Temporal logics for hyperproperties
  • Expressiveness
  • Decidability
  • Model checking

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Jan Baumeister, Norine Coenen, Borzoo Bonakdarpour, Bernd Finkbeiner, and César Sánchez. A Temporal Logic for Asynchronous Hyperproperties. In Proc. 33rd CAV, volume 12759 of LNCS 12759, pages 694-717. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-81685-8_33.
  2. Raven Beutner, Bernd Finkbeiner, Hadar Frenkel, and Niklas Metzger. Second-Order Hyperproperties. In Proc. 35th CAV, volume 13965 of Lecture Notes in Computer Science, pages 309-332. Springer, 2023. URL: https://doi.org/10.1007/978-3-031-37703-7_15.
  3. Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Marco Gario, Stefano Tonetta, and Viktoria Vozárová. Diagnosability of fair transition systems. Artif. Intell., 309:103725, 2022. URL: https://doi.org/10.1016/J.ARTINT.2022.103725.
  4. Alberto Bombardelli, Laura Bozzelli, César Sánchez, and Stefano Tonetta. Unifying asynchronous logics for hyperproperties, 2024. URL: https://doi.org/10.48550/arXiv.2404.16778.
  5. Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta. Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic. Log. Methods Comput. Sci., 11(4), 2015. URL: https://doi.org/10.2168/LMCS-11(4:4)2015.
  6. Laura Bozzelli, Bastien Maubert, and Spophie Pinchinat. Unifying Hyper and Epistemic Temporal Logics. In Proc. 18th FoSSaCS, LNCS 9034, pages 167-182. Springer, 2015. URL: https://doi.org/10.1007/978-3-662-46678-0_11.
  7. Laura Bozzelli, Adriano Peron, and César Sánchez. Asynchronous Extensions of HyperLTL. In Proc. 36th LICS, pages 1-13. IEEE, 2021. URL: https://doi.org/10.1109/LICS52264.2021.9470583.
  8. Laura Bozzelli, Adriano Peron, and César Sánchez. Expressiveness and Decidability of Temporal Logics for Asynchronous Hyperproperties. In Proc. 33rd CONCUR, volume 243 of LIPIcs, pages 27:1-27:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.CONCUR.2022.27.
  9. Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. Temporal Logics for Hyperproperties. In Proc. 3rd POST, LNCS 8414, pages 265-284. Springer, 2014. URL: https://doi.org/10.1007/978-3-642-54792-8_15.
  10. Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security, 18(6):1157-1210, 2010. URL: https://doi.org/10.3233/JCS-2009-0393.
  11. Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. The hierarchy of hyperlogics. In Proc. 34th LICS, pages 1-13. IEEE, 2019. URL: https://doi.org/10.1109/LICS.2019.8785713.
  12. Rayna Dimitrova, Bernd Finkbeiner, Máté M Kovács, Markus N. Rabe, and Helmut Seidl. Model Checking Information Flow in Reactive Systems. In Proc. 13th VMCAI, LNCS 7148, pages 169-185. Springer, 2012. URL: https://doi.org/10.1007/978-3-642-27940-9_12.
  13. E. Allen Emerson and Joseph Y. Halpern. "Sometimes" and "Not Never" revisited: on branching versus linear time temporal logic. J. ACM, 33(1):151-178, 1986. URL: https://doi.org/10.1145/4904.4999.
  14. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about knowledge, volume 4. MIT Press Cambridge, 1995. URL: https://doi.org/10.7551/mitpress/5803.001.0001.
  15. Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. In Proc. 27th CONCUR, LIPIcs 59, pages 13:1-13:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2016.13.
  16. Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In Proc. 34th STACS, LIPIcs 66, pages 30:1-30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.STACS.2017.30.
  17. Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of Regular Programs. J. Comput. Syst. Sci., 18(2):194-211, 1979. URL: https://doi.org/10.1016/0022-0000(79)90046-1.
  18. Joseph A. Goguen and José Meseguer. Security Policies and Security Models. In IEEE Symposium on Security and Privacy, pages 11-20. IEEE Computer Society, 1982. URL: https://doi.org/10.1109/SP.1982.10014.
  19. Jens Oliver Gutsfeld, Arne Meier, Christoph Ohrem, and Jonni Virtema. Temporal Team Semantics Revisited. In Proc. 37th LICS, pages 44:1-44:13. ACM, 2022. URL: https://doi.org/10.1145/3531130.3533360.
  20. Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Propositional dynamic logic for hyperproperties. In Proc. 31st CONCUR, LIPIcs 171, pages 50:1-50:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CONCUR.2020.50.
  21. Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. Automata and fixpoints for asynchronous hyperproperties. Proc. ACM Program. Lang., 4(POPL), 2021. URL: https://doi.org/10.1145/3434319.
  22. Joseph Y. Halpern and Kevin R. O'Neill. Secrecy in multiagent systems. ACM Trans. Inf. Syst. Secur., 12(1), 2008. URL: https://doi.org/10.1145/1410234.1410239.
  23. Joseph Y. Halpern and Moshe Y. Vardi. The Complexity of Reasoning about Knowledge and Time: Extended Abstract. In Proc. 18th STOC, pages 304-315. ACM, 1986. URL: https://doi.org/10.1145/12130.12161.
  24. Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team Semantics for the Specification and Verification of Hyperproperties. In Proc. 43rd MFCS, LIPIcs 117, pages 10:1-10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.MFCS.2018.10.
  25. Orna Kupferman, Nir Piterman, and Moshe Y. Vardi. From liveness to promptness. Formal Methods Syst. Des., 34(2):83-103, 2009. URL: https://doi.org/10.1007/S10703-009-0067-Z.
  26. Martin Lück. On the complexity of linear temporal logic with team semantics. Theor. Comput. Sci., 837:1-25, 2020. URL: https://doi.org/10.1016/j.tcs.2020.04.019.
  27. Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems - Specification. Springer-Verlag, 1992. URL: https://doi.org/10.1007/978-1-4612-0931-7.
  28. John D. McLean. A General Theory of Composition for a Class of "Possibilistic" Properties. IEEE Trans. Software Eng., 22(1):53-67, 1996. URL: https://doi.org/10.1109/32.481534.
  29. Amir Pnueli. The Temporal Logic of Programs. In Proc. 18th FOCS, pages 46-57. IEEE Computer Society, 1977. URL: https://doi.org/10.1109/SFCS.1977.32.
  30. Markus N. Rabe. A temporal logic approach to information-flow control. PhD thesis, Saarland University, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/2016/6387/.
  31. Meera Sampath, Raja Sengupta, Stephen Lafortune, Kazin Sinnamohideen, and Demosthenis Teneketzis. Diagnosability of discrete-event systems. IEEE Trans. Autom. Control., 40(9):1555-1575, 1995. URL: https://doi.org/10.1109/9.412626.
  32. A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The Complementation Problem for Büchi Automata with Applications to Temporal Logic. Theoretical Computer Science, 49:217-237, 1987. URL: https://doi.org/10.1016/0304-3975(87)90008-9.
  33. Ron van der Meyden and Nikolay V. Shilov. Model checking knowledge and time in systems with perfect recall (extended abstract). In Proc. 19th FSTTCS, LNCS 1738, pages 432-445. Springer, 1999. URL: https://doi.org/10.1007/3-540-46691-6_35.
  34. Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput., 115(1):1-37, 1994. URL: https://doi.org/10.1006/inco.1994.1092.
  35. Jonni Virtema, Jana Hofmann, Bernd Finkbeiner, Juha Kontinen, and Fan Yang. Linear-Time Temporal Logic with Team Semantics: Expressivity and Complexity. In Proc. 41st IARCS FSTTCS, LIPIcs 213, pages 52:1-52:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.FSTTCS.2021.52.
  36. Steve Zdancewic and Andrew C. Myers. Observational Determinism for Concurrent Program Security. In Proc. 16th IEEE CSFW-16, pages 29-43. IEEE Computer Society, 2003. URL: https://doi.org/10.1109/CSFW.2003.1212703.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail