Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies

Authors Karthik Gajulapalli , Zeyong Li, Ilya Volkovich



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.23.pdf
  • Filesize: 0.84 MB
  • 19 pages

Document Identifiers

Author Details

Karthik Gajulapalli
  • Georgetown University, Washington, DC, USA
Zeyong Li
  • National University of Singapore, Singapore
Ilya Volkovich
  • Boston College, MA, USA

Acknowledgements

The authors would like to thank Alexander Golovnev, William Gasarch and Edward Hirsch for many helpful discussions and feedback on an earlier draft of this manuscript. The authors would also like to thank the anonymous referees for useful comments.

Cite As Get BibTex

Karthik Gajulapalli, Zeyong Li, and Ilya Volkovich. Oblivious Complexity Classes Revisited: Lower Bounds and Hierarchies. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.23

Abstract

In this work we study oblivious complexity classes. These classes capture the power of interactive proofs where the prover(s) are only given the input size rather than the actual input. In particular, we study the connections between the symmetric polynomial time - S₂P and its oblivious counterpart - O₂P. Among our results:  
- For each k ∈ ℕ, we construct an explicit language L_k ∈ O₂P that cannot be computed by circuits of size n^k. 
- We prove a hierarchy theorem for O₂TIME. In particular, for any time constructible function t:ℕ → ℕ and any ε > 0 we show that: O₂TIME[t(n)] ⊊ O₂TIME[t(n)^{1 + ε}].
- We prove new structural results connecting O₂P and S₂P. 
- We make partial progress towards the resolution of an open question posed by Goldreich and Meir (TOCT 2015) that relates the complexity of NP to its oblivious counterpart - ONP. 
- We identify a natural class of problems in O₂P from computational Ramsey theory, that are not expected to be in 𝖯 or even BPP. 
To the best of our knowledge, these results constitute the first explicit fixed-polynomial lower bound and hierarchy theorem for O₂P. The smallest uniform complexity class for which such lower bounds were previously known was S₂P due to Cai (JCSS 2007). In addition, this is the first uniform hierarchy theorem for a semantic class. All previous results required some non-uniformity. In order to obtain some of the results in the paper, we introduce the notion of uniformly-sparse extensions which could be of independent interest.
Our techniques build upon the de-randomization framework of the powerful Range Avoidance problem that has yielded many new interesting explicit circuit lower bounds.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity classes
  • Theory of computation → Problems, reductions and completeness
  • Theory of computation → Circuit complexity
  • Theory of computation → Interactive proof systems
  • Theory of computation → Pseudorandomness and derandomization
Keywords
  • fixed circuit lower bounds
  • semantic time hierarchy
  • oblivious complexity
  • range avoidance

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. S. Aaronson. Oracles are subtle but not malicious. In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 340-354. IEEE Computer Society, 2006. URL: https://doi.org/10.1109/CCC.2006.32.
  2. S. Aaronson. The learnability of quantum states. In Proceedings of the Royal Society A, volume 463, pages 3089-3114, 2007. URL: https://doi.org/10.1098/rspa.2007.0113.
  3. D. Apon, W. Gasarch, and K. Lawler. The complexity of grid coloring. Theory Comput. Syst., 67(3):521-547, 2023. URL: https://doi.org/10.1007/S00224-022-10098-5.
  4. S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University Press, 2009. Google Scholar
  5. B. Barak. A probabilistic-time hierarchy theorem for "slightly non-uniform" algorithms. In RANDOM, pages 194-208, 2002. Google Scholar
  6. N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421-433, 1996. URL: https://doi.org/10.1006/JCSS.1996.0032.
  7. J.-Y. Cai. S₂P ⊆ ZPP^NP. Journal of Computer and System Sciences, 73(1):25-35, 2007. Google Scholar
  8. J.-Y. Cai and O. Watanabe. On proving circuit lower bounds against the polynomial-time hierarchy. SIAM J. Comput., 33(4):984-1009, 2004. URL: https://doi.org/10.1137/S0097539703422716.
  9. R. Canetti. More on BPP and the polynomial-time hierarchy. Inf. Process. Lett., 57(5):237-241, 1996. URL: https://doi.org/10.1016/0020-0190(96)00016-6.
  10. V. T. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In STACS, pages 230-241, 2006. Google Scholar
  11. V. T. Chakaravarthy and S. Roy. Arthur and merlin as oracles. Comput. Complex., 20(3):505-558, 2011. URL: https://doi.org/10.1007/S00037-011-0015-3.
  12. E. Chattopadhyay and D. Zuckerman. Explicit two-source extractors and resilient functions. Annals of Mathematics, 189(3):653-705, 2019. URL: https://doi.org/10.4007/annals.2019.189.3.1.
  13. L. Chen, S. Hirahara, and H. Ren. Symmetric exponential time requires near-maximum circuit size. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2024, to appear. Association for Computing Machinery, 2024. Google Scholar
  14. L. Chen and R. Tell. Hardness vs randomness, revised: Uniform, non-black-box, and instance-wise. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 125-136, 2022. URL: https://doi.org/10.1109/FOCS52979.2021.00021.
  15. Y. Chen, Y. Huang, J. Li, and H. Ren. Range avoidance, remote point, and hard partial truth table via satisfying-pairs algorithms. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 1058-1066, New York, NY, USA, 2023. Association for Computing Machinery. URL: https://doi.org/10.1145/3564246.3585147.
  16. Y. Chen and J. Li. Hardness of range avoidance and remote point for restricted circuits via cryptography. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2024, to appear. Association for Computing Machinery, 2024. Google Scholar
  17. E. Chung, A. Golovnev, Z. Li, M. Obremski, S. Saraogi, and N. Stephens-Davidowitz. On the randomized complexity of range avoidance, with applications to cryptography and metacomplexity. ECCC preprint, 2023. URL: https://eccc.weizmann.ac.il/report/2023/193/.
  18. S. A. Cook. A hierarchy for nondeterministic time complexity. In Proceedings of the fourth annual ACM symposium on Theory of computing - STOC ’72, STOC ’72. ACM Press, 1972. URL: https://doi.org/10.1145/800152.804913.
  19. P. Dixon, A. Pavan, J. Vander Woude, and N. V. Vinodchandran. Pseudodeterminism: promises and lowerbounds. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 1552-1565, New York, NY, USA, 2022. Association for Computing Machinery. URL: https://doi.org/10.1145/3519935.3520043.
  20. L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 316-324, 2004. Google Scholar
  21. L. Fortnow, R. Santhanam, and L. Trevisan. Hierarchies for semantic classes. In Proceedings of the 37th Annual ACM SIGACT Symposium on Theory of Computing, pages 348-355. ACM, New York, 2005. URL: https://doi.org/10.1145/1060590.1060642.
  22. L. Fortnow, R. Santhanam, and R. Williams. Fixed-polynomial size circuit bounds. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 19-26. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/CCC.2009.21.
  23. G. S. Frandsen and P. B. Miltersen. Reviewing bounds on the circuit size of the hardest functions. Information processing letters, 95(2):354-357, 2005. URL: https://doi.org/10.1016/J.IPL.2005.03.009.
  24. K. Gajulapalli, A. Golovnev, S. Nagargoje, and S. Saraogi. Range avoidance for constant depth circuits: Hardness and algorithms. In Nicole Megow and Adam D. Smith, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13, 2023, Atlanta, Georgia, USA, volume 275 of LIPIcs, pages 65:1-65:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.65.
  25. W. Gasarch. https://blog.computationalcomplexity.org/2010/07/spares-problems-in-np-thought-to-not-be.html, 2010.
  26. O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge University Press, 2008. Google Scholar
  27. O. Goldreich and O. Meir. Input-oblivious proof systems and a uniform complexity perspective on p/poly. ACM Transactions on Computation Theory (TOCT), 7(4):1-13, 2015. URL: https://doi.org/10.1145/2799645.
  28. V. Guruswami, X. Lyu, and X. Wang. Range avoidance for low-depth circuits and connections to pseudorandomness. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference), volume 245 of LIPIcs, pages 20:1-20:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.20.
  29. J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions of the American Mathematical Society, 117(0):285-306, 1965. URL: https://doi.org/10.1090/s0002-9947-1965-0170805-7.
  30. F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape turing machines. J. ACM, 13(4):533-546, October 1966. URL: https://doi.org/10.1145/321356.321362.
  31. R. Ilango, J. Li, and R. Williams. Indistinguishability obfuscation, range avoidance, and bounded arithmetic. In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, pages 1076-1089, New York, NY, USA, 2023. Association for Computing Machinery. URL: https://doi.org/10.1145/3564246.3585187.
  32. R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: derandomizing the xor lemma. In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC), pages 220-229, 1997. Google Scholar
  33. R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control, 55(1-3):40-56, 1982. URL: https://doi.org/10.1016/S0019-9958(82)90382-5.
  34. R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity classes. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, April 28-30, 1980, Los Angeles, California, USA, pages 302-309, 1980. URL: https://doi.org/10.1145/800141.804678.
  35. R. Kleinberg, O. Korten, D. Mitropolsky, and C. Papadimitriou. Total Functions in the Polynomial Hierarchy. In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics (LIPIcs), pages 44:1-44:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ITCS.2021.44.
  36. J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM J. Comput., 28(1):311-324, 1998. URL: https://doi.org/10.1137/S0097539795296206.
  37. O. Korten. The hardest explicit construction. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 433-444. IEEE, 2022. Google Scholar
  38. O. Korten and T. Pitassi. Strong vs. weak range avoidance and the linear ordering principle. In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society, 2024. URL: https://eccc.weizmann.ac.il/report/2024/076/.
  39. J. Li and T. Yang. 3.1n- o (n) circuit lower bounds for explicit functions. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages 1180-1193, 2022. Google Scholar
  40. X. Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1271-1281, Los Alamitos, CA, USA, November 2023. IEEE Computer Society. URL: https://doi.org/10.1109/FOCS57990.2023.00075.
  41. Z. Li. Symmetric exponential time requires near-maximum circuit size: Simplified, truly uniform. In Proceedings of the 56th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2024. Association for Computing Machinery, 2024. Google Scholar
  42. Z. Lu, I. C. Oliveira, and R. Santhanam. Pseudodeterministic algorithms and the structure of probabilistic time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages 303-316, New York, NY, USA, 2021. Association for Computing Machinery. URL: https://doi.org/10.1145/3406325.3451085.
  43. S. R. Mahaney. Sparse complete sets of NP: solution of a conjecture of berman and hartmanis. J. Comput. Syst. Sci., 25(2):130-143, 1982. URL: https://doi.org/10.1016/0022-0000(82)90002-2.
  44. D. van Melkebeek and K. Pervyshev. A generic time hierarchy with one bit of advice. Computational Complexity, 16(2):139-179, 2007. URL: https://doi.org/10.1007/S00037-007-0227-8.
  45. P. B. Miltersen, N. V. Vinodchandran, and O. Watanabe. Super-polynomial versus half-exponential circuit size in the exponential hierarchy. In COCOON, pages 210-220, 1999. Google Scholar
  46. N. Nisan and A. Wigderson. Hardness vs. randomness. J. Comput. Syst. Sci., 49(2):149-167, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80043-1.
  47. S. P. Radziszowski. Small ramsey numbers. The Electronic Journal of Combinatorics [electronic only], DS01, 2021. URL: https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1.
  48. H. Ren, R. Santhanam, and Z. Wang. On the range avoidance problem for circuits. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 640-650, Los Alamitos, CA, USA, November 2022. IEEE Computer Society. URL: https://doi.org/10.1109/FOCS54457.2022.00067.
  49. A. Russell and R. Sundaram. Symmetric alternation captures BPP. Comput. Complex., 7(2):152-162, 1998. URL: https://doi.org/10.1007/S000370050007.
  50. R. Santhanam. Circuit lower bounds for merlin-arthur classes. SIAM J. Comput., 39(3):1038-1061, 2009. URL: https://doi.org/10.1137/070702680.
  51. J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity classes. Journal of the ACM, 25(1):146-167, January 1978. URL: https://doi.org/10.1145/322047.322061.
  52. C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Syst. Tech. J., 28(1):59-98, 1949. URL: https://doi.org/10.1002/J.1538-7305.1949.TB03624.X.
  53. N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-2):415-418, 2005. URL: https://doi.org/10.1016/J.TCS.2005.07.032.
  54. R. Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1-2:32, 2014. URL: https://doi.org/10.1145/2559903.
  55. S. Žák. A turing machine time hierarchy. Theoretical Computer Science, 26(3):327-333, October 1983. URL: https://doi.org/10.1016/0304-3975(83)90015-4.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail