Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model

Authors Christian Konrad , Andrew McGregor , Rik Sengupta , Cuong Than



PDF
Thumbnail PDF

File

LIPIcs.FSTTCS.2024.29.pdf
  • Filesize: 0.77 MB
  • 15 pages

Document Identifiers

Author Details

Christian Konrad
  • University of Bristol, UK
Andrew McGregor
  • University of Massachusetts Amherst, MA, USA
Rik Sengupta
  • IBM Research, Cambridge, MA, USA
  • University of Massachusetts Amherst, MA, USA
Cuong Than
  • University of Massachusetts Amherst, MA, USA

Acknowledgements

We wish to thank Cameron Musco, Hung Le, Rajarshi Bhattacharjee, and David Woodruff for a lot of preliminary discussions about this work.

Cite As Get BibTex

Christian Konrad, Andrew McGregor, Rik Sengupta, and Cuong Than. Matchings in Low-Arboricity Graphs in the Dynamic Graph Stream Model. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024) https://doi.org/10.4230/LIPIcs.FSTTCS.2024.29

Abstract

We consider the problem of estimating the size of a maximum matching in low-arboricity graphs in the dynamic graph stream model. In this setting, an algorithm with limited memory makes multiple passes over a stream of edge insertions and deletions, resulting in a low-arboricity graph. Let n be the number of vertices of the input graph, and α be its arboricity. We give the following results.  
1) As our main result, we give a three-pass streaming algorithm that produces an (α + 2)(1 + ε)-approximation and uses space O(ε^{-2}⋅α²⋅n^{1/2}⋅log n). This result should be contrasted with the Ω(α^{-5/2}⋅n^{1/2}) space lower bound established by [Assadi et al., SODA'17] for one-pass algorithms, showing that, for graphs of constant arboricity, the one-pass space lower bound can be achieved in three passes (up to poly-logarithmic factors). Furthermore, we obtain a two-pass algorithm that uses space O(ε^{-2}⋅α²⋅n^{3/5}⋅log n).
2) We also give a (1+ε)-approximation multi-pass algorithm, where the space used is parameterized by an upper bound on the size of a largest matching. For example, using O(log log n) passes, the space required is O(ε^{-1}⋅α²⋅k⋅log n), where k denotes an upper bound on the size of a largest matching.  Finally, we define a notion of arboricity in the context of matrices. This is a natural measure of the sparsity of a matrix that is more nuanced than simply bounding the total number of nonzero entries, but less restrictive than bounding the number of nonzero entries in each row and column. For such matrices, we exploit our results on estimating matching size to present upper bounds for the problem of rank estimation in the dynamic data stream model.

Subject Classification

ACM Subject Classification
  • Theory of computation → Sketching and sampling
Keywords
  • Data Streams
  • Graph Matching
  • Graph Arboricity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth. Correlation clustering in data streams. Algorithmica, 83(7):1980-2017, 2021. URL: https://doi.org/10.1007/S00453-021-00816-9.
  2. Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with application to the maximum matching problem. Inf. Comput., 222:59-79, 2013. URL: https://doi.org/10.1016/j.ic.2012.10.006.
  3. Sepehr Assadi. A two-pass (conditional) lower bound for semi-streaming maximum matching. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 708-742. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.32.
  4. Sepehr Assadi. A simple (1 - ε)-approximation semi-streaming algorithm for maximum (weighted) matching. In Merav Parter and Seth Pettie, editors, 2024 Symposium on Simplicity in Algorithms, SOSA 2024, Alexandria, VA, USA, January 8-10, 2024, pages 337-354. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977936.31.
  5. Sepehr Assadi, Soheil Behnezhad, Sanjeev Khanna, and Huan Li. On regularity lemma and barriers in streaming and dynamic matching. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023, pages 131-144. ACM, 2023. URL: https://doi.org/10.1145/3564246.3585110.
  6. Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming bipartite matching in fewer passes and optimal space. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 627-669. SIAM, 2022. URL: https://doi.org/10.1137/1.9781611977073.29.
  7. Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph streams. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1723-1742. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.113.
  8. Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dynamic graph streams and the simultaneous communication model. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345-1364, 2016. URL: https://doi.org/10.1137/1.9781611974331.ch93.
  9. Sepehr Assadi, Christian Konrad, Kheeran K. Naidu, and Janani Sundaresan. O(log log n) passes is optimal for semi-streaming maximal independent set. In Bojan Mohar, Igor Shinkar, and Ryan O'Donnell, editors, Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024, pages 847-858. ACM, 2024. URL: https://doi.org/10.1145/3618260.3649763.
  10. Sepehr Assadi and Vihan Shah. An asymptotically optimal algorithm for maximum matching in dynamic streams. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 9:1-9:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ITCS.2022.9.
  11. Sepehr Assadi and Janani Sundaresan. Hidden permutations to the rescue: Multi-pass streaming lower bounds for approximate matchings. In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 909-932. IEEE, 2023. URL: https://doi.org/10.1109/FOCS57990.2023.00058.
  12. Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 263-274, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_23.
  13. M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams. In ICALP, pages 693-703, 2002. Google Scholar
  14. Rajesh Hemant Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with applications to dynamic graph streams. CoRR, abs/1505.01731, 2015. URL: http://arxiv.org/abs/1505.01731, URL: https://arxiv.org/abs/1505.01731.
  15. Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 29:1-29:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPICS.ESA.2017.29.
  16. Graham Cormode and S. Muthukrishnan. Space efficient mining of multigraph streams. In ACM Principles of Database Systems, pages 271-282, 2005. URL: https://doi.org/10.1145/1065167.1065201.
  17. Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching, via unweighted matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, pages 96-104, 2014. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96.
  18. Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-window model. In Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, pages 337-348, 2013. URL: https://doi.org/10.1007/978-3-642-40450-4_29.
  19. Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees for weighted matching in the semi-streaming model. SIAM J. Discrete Math., 25(3):1251-1265, 2011. URL: https://doi.org/10.1137/100801901.
  20. Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1217-1233, 2015. URL: https://doi.org/10.1137/1.9781611973730.81.
  21. J. Feigenbaum, S. Kannan, McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming model. Theoretical Computer Science, 348(2-3):207-216, 2005. URL: https://doi.org/10.1016/J.TCS.2005.09.013.
  22. Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207-216, 2005. URL: https://doi.org/10.1016/j.tcs.2005.09.013.
  23. Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 468-485, 2012. URL: http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016, URL: https://doi.org/10.1137/1.9781611973099.41.
  24. Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph processing. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013, Palo Alto, California, USA, 5-7 June, 2013, pages 287-298, 2013. URL: https://doi.org/10.1109/CCC.2013.37.
  25. Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on data streams. In James M. Abello and Jeffrey Scott Vitter, editors, External Memory Algorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, May 20-22, 1998, volume 50 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 107-118. DIMACS/AMS, 1998. URL: https://doi.org/10.1090/DIMACS/050/05.
  26. Hossein Jowhari. An estimator for matching size in low arboricity graphs with two applications. J. Comb. Optim., 45(1):21, 2023. URL: https://doi.org/10.1007/S10878-022-00929-Z.
  27. Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight bounds for lp samplers, finding duplicates in streams, and related problems. In Proceedings of the Thirtieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '11, pages 49-58, New York, NY, USA, 2011. Association for Computing Machinery. URL: https://doi.org/10.1145/1989284.1989289.
  28. Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679-1697, 2013. URL: https://doi.org/10.1137/1.9781611973105.121.
  29. Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 734-751, 2014. URL: https://doi.org/10.1137/1.9781611973402.55.
  30. Christian Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages 840-852, 2015. URL: https://doi.org/10.1007/978-3-662-48350-3_70.
  31. Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-streaming with few passes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 231-242, 2012. URL: https://doi.org/10.1007/978-3-642-32512-0_20.
  32. Christian Konrad and Kheeran K. Naidu. On two-pass streaming algorithms for maximum bipartite matching. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume 207 of LIPIcs, pages 19:1-19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.19.
  33. Christian Konrad and Kheeran K. Naidu. An unconditional lower bound for two-pass streaming algorithms for maximum matching approximation. In David P. Woodruff, editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 2881-2899. SIAM, 2024. URL: https://doi.org/10.1137/1.9781611977912.102.
  34. Christian Konrad, Kheeran K. Naidu, and Arun Steward. Maximum matching via maximal matching queries. In Petra Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 41:1-41:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.STACS.2023.41.
  35. László Lovász. On determinants, matchings, and random algorithms. In Lothar Budach, editor, Fundamentals of Computation Theory, FCT 1979, Proceedings of the Conference on Algebraic, Arthmetic, and Categorial Methods in Computation Theory, Berlin/Wendisch-Rietz, Germany, September 17-21, 1979, pages 565-574. Akademie-Verlag, Berlin, 1979. Google Scholar
  36. Andrew McGregor. Finding graph matchings in data streams. APPROX-RANDOM, pages 170-181, 2005. URL: https://doi.org/10.1007/11538462_15.
  37. Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Klaus Jansen, Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 17:1-17:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.APPROX-RANDOM.2016.17.
  38. Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for matchings in low arboricity graphs. In Raimund Seidel, editor, 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, volume 61 of OASIcs, pages 14:1-14:4. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/OASICS.SOSA.2018.14.
  39. C. St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society, s1-36(1):445-450, 1961. URL: https://doi.org/10.1112/jlms/s1-36.1.445.
  40. Shay Solomon. Local algorithms for bounded degree sparsifiers in sparse graphs. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 52:1-52:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPICS.ITCS.2018.52.
  41. Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1-20, 2012. URL: https://doi.org/10.1007/s00453-010-9438-5.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail