LIPIcs.FSTTCS.2024.7.pdf
- Filesize: 1.12 MB
- 15 pages
In the Minimum Consistent Subset (MCS) problem, we are presented with a connected simple undirected graph G, consisting of a vertex set V(G) of size n and an edge set E(G). Each vertex in V(G) is assigned a color from the set {1,2,…, c}. The objective is to determine a subset V' ⊆ V(G) with minimum possible cardinality, such that for every vertex v ∈ V(G), at least one of its nearest neighbors in V' (measured in terms of the hop distance) shares the same color as v. The decision problem, indicating whether there exists a subset V' of cardinality at most l for some positive integer l, is known to be NP-complete even for planar graphs. In this paper, we establish that the MCS problem is NP-complete on trees. We also provide a fixed-parameter tractable (FPT) algorithm for MCS on trees parameterized by the number of colors (c) running in O(2^{6c} n^6) time, significantly improving the currently best-known algorithm whose running time is O(2^{4c} n^{2c+3}). In an effort to comprehensively understand the computational complexity of the MCS problem across different graph classes, we extend our investigation to interval graphs. We show that it remains NP-complete for interval graphs, thus enriching graph classes where MCS remains intractable.
Feedback for Dagstuhl Publishing