Selection Via the Bogo-Method - More on the Analysis of Perversely Awful Randomized Algorithms

Authors Markus Holzer, Jan-Tobias Maurer



PDF
Thumbnail PDF

File

LIPIcs.FUN.2018.23.pdf
  • Filesize: 0.71 MB
  • 23 pages

Document Identifiers

Author Details

Markus Holzer
  • Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
Jan-Tobias Maurer
  • Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

Cite AsGet BibTex

Markus Holzer and Jan-Tobias Maurer. Selection Via the Bogo-Method - More on the Analysis of Perversely Awful Randomized Algorithms. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 23:1-23:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
https://doi.org/10.4230/LIPIcs.FUN.2018.23

Abstract

We continue our research on perversely awful randomized algorithms, which started nearly a decade ago. Based on the bogo-method we design a bogo-selection algorithm and variants thereof and analyse them with elementary methods. Moreover, practical experiments are performed.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Mathematics of computing → Probability and statistics
  • Theory of computation → Algorithm design techniques
Keywords
  • selection
  • bogo-method
  • combinatorial sums and series, inverse binomial coefficients
  • experimental result

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. L. Comtet. Advanced Combinatorics - The Art of Finite and Infinite Expansions. Reidel Publishing, 1974. Google Scholar
  2. H. W. Gould. Combinatorial Identities. Morgantown Printing and Binding, 1972. Google Scholar
  3. Hermann Gruber, Markus Holzer, and Oliver Ruepp. Sorting the slow way: An analysis of perversely awful randomized sorting algorithms. In Pierluigi Crescenzi, Giuseppe Prencipe, and Geppino Pucci, editors, Fun with Algorithms, 4th International Conference, FUN 2007, Castiglioncello, Italy, June 3-5, 2007, Proceedings, volume 4475 of Lecture Notes in Computer Science, pages 183-197. Springer, 2007. URL: http://dx.doi.org/10.1007/978-3-540-72914-3_17.
  4. D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, 1969. Google Scholar
  5. D. H. Lehmer. Interesting series involving the central binomial coefficient. Amer. Math. Mon., 92(7):449-457, - 1985. URL: http://dx.doi.org/10.2307/2322496.
  6. E. S. Raymond. The New Hacker’s Dictionary. MIT Press, 1996. Google Scholar
  7. A. M. Rockett. Sums of inverses of binomial coefficients. Fibonacci Quart., 19(5):433-437, 1981. Google Scholar
  8. R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Pearson Education, 2013. Google Scholar
  9. R. Sprugnoli. Sum of reciprocals of the central binomial coefficients. Integers, 6:A27, 2006. Google Scholar
  10. B. Sury, T. Wang, and F.-Z. Zhao. Identities involving reciprocals of binomial coefficients. Integer Seq., 7:04.2.8, 2004. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail