Physical Zero-Knowledge Proof for Numberlink

Authors Suthee Ruangwises , Toshiya Itoh



PDF
Thumbnail PDF

File

LIPIcs.FUN.2021.22.pdf
  • Filesize: 394 kB
  • 11 pages

Document Identifiers

Author Details

Suthee Ruangwises
  • Department of Mathematical and Computing Science, Tokyo Institute of Technology, Japan
Toshiya Itoh
  • Department of Mathematical and Computing Science, Tokyo Institute of Technology, Japan

Cite AsGet BibTex

Suthee Ruangwises and Toshiya Itoh. Physical Zero-Knowledge Proof for Numberlink. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 22:1-22:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
https://doi.org/10.4230/LIPIcs.FUN.2021.22

Abstract

Numberlink is a logic puzzle for which the player has to connect all pairs of cells with the same numbers by non-crossing paths in a rectangular grid. In this paper, we propose a physical protocol of zero-knowledge proof for Numberlink using a deck of cards, which allows a player to physically show that he/she knows a solution without revealing it. In particular, we develop a physical protocol to count the number of elements in a list that are equal to a given secret value without revealing that value, the positions of elements in the list that are equal to it, or the value of any other element in the list. Our protocol can also be applied to verify the existence of vertex-disjoint paths connecting all given pairs of endpoints in any undirected graph.

Subject Classification

ACM Subject Classification
  • Security and privacy → Information-theoretic techniques
  • Theory of computation → Cryptographic protocols
Keywords
  • Zero-knowledge proof
  • Card-based cryptography
  • Numberlink
  • Puzzles
  • Games

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. A. Adcock, E.D. Demaine, M.L. Demaine, M.P. O'Brien, F. Reidl, F.S. Villaamil, and B.D. Sullivan. Zig-Zag Numberlink is NP-complete. Journal of Information Processing, 23(3):239-245, 2015. URL: https://doi.org/10.2197/ipsjjip.23.239.
  2. X. Bultel, J. Dreier, J.-G. Dumas, and P. Lafourcade. Physical zero-knowledge proofs for Akari, Takuzu, Kakuro and KenKen. In Proceedings of the 8th International Conference on Fun with Algorithms (FUN), pages 8:1-8:20, 2016. URL: https://doi.org/10.4230/LIPIcs.FUN.2016.8.
  3. X. Bultel, J. Dreier, J.-G. Dumas, P. Lafourcade, D. Miyahara, T. Mizuki, A. Nagao, T. Sasaki, K. Shinagawa, and H. Sone. Physical zero-knowledge proof for Makaro. In Proceedings of the 20th International Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), pages 111-125, 2018. URL: https://doi.org/10.1007/978-3-030-03232-6_8.
  4. Y.-F. Chien and W.-K. Hon. Cryptographic and physical zero-knowledge proof: From Sudoku to Nonogram. In Proceedings of the 5th International Conference on Fun with Algorithms (FUN), pages 102-112, 2010. URL: https://doi.org/10.1007/978-3-642-13122-6_12.
  5. J.-G. Dumas, P. Lafourcade, D. Miyahara, T. Mizuki, T. Sasaki, and H. Sone. Interactive physical zero-knowledge proof for Norinori. In Proceedings of the 25th International Computing and Combinatorics Conference (COCOON), pages 166-177, 2019. URL: https://doi.org/10.1007/978-3-030-26176-4_14.
  6. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. Journal of the ACM, 38(3):691-729, 1991. URL: https://doi.org/10.1145/116825.116852.
  7. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM Journal on Computing, 18(1):186-208, 1989. URL: https://doi.org/10.1137/0218012.
  8. Google Play: Numberlink. URL: https://play.google.com/store/search?q=Numberlink.
  9. R. Gradwohl, M. Naor, B. Pinkas, and G.N. Rothblum. Cryptographic and physical zero-knowledge proof systems for solutions of Sudoku puzzles. In Proceedings of the 4th International Conference on Fun with Algorithms (FUN), pages 166-182, 2007. URL: https://doi.org/10.1007/978-3-540-72914-3_16.
  10. Y. Hashimoto, K. Shinagawa, K. Nuida, M. Inamura, and G. Hanaoka. Secure grouping protocol using a deck of cards. In Proceedings of the 10th International Conference on Information Theoretic Security (ICITS), pages 135-152, 2017. URL: https://doi.org/10.1007/978-3-319-72089-0_8.
  11. T. Ibaraki and Y. Manabe. A more efficient card-based protocol for generating a random permutation without fixed points. In Proceedings of the 3rd International Conference on Mathematics and Computers in Sciences and Industry (MCSI), pages 252-257, 2016. URL: https://doi.org/10.1109/MCSI.2016.054.
  12. R. Ishikawa, E. Chida, and T. Mizuki. Efficient card-based protocols for generating a hidden random permutation without fixed points. In Proceedings of the 14th International Conference on Unconventional Computation and Natural Computation (UCNC), pages 215-226, 2015. URL: https://doi.org/10.1007/978-3-319-21819-9_16.
  13. K. Kotsuma and Y. Takenaga. NP-completeness and enumeration of Number Link puzzle. IEICE Technical Report, 109(465):1-7, 2010. Google Scholar
  14. J.F. Lynch. The equivalence of theorem proving and the interconnection problem. ACM SIGDA Newsletter, 5(3):31-36, 1975. URL: https://doi.org/10.1145/1061425.1061430.
  15. D. Miyahara, T. Sasaki, T. Mizuki, and H. Sone. Card-based physical zero-knowledge proof for Kakuro. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E102.A(9):1072-1078, 2019. URL: https://doi.org/10.1587/transfun.E102.A.1072.
  16. Nikoli: Numberlink. URL: https://www.nikoli.co.jp/en/puzzles/numberlink.html.
  17. T. Sasaki, T. Mizuki, and H. Sone. Card-based zero-knowledge proof for Sudoku. In Proceedings of the 9th International Conference on Fun with Algorithms (FUN), pages 29:1-29:10, 2018. URL: https://doi.org/10.4230/LIPIcs.FUN.2018.29.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail