Beedroids: How Luminous Autonomous Swarms of UAVs Can Save the World?

Authors Quentin Bramas , Stéphane Devismes , Anaïs Durand , Pascal Lafourcade , Anissa Lamani



PDF
Thumbnail PDF

File

LIPIcs.FUN.2022.7.pdf
  • Filesize: 1.58 MB
  • 21 pages

Document Identifiers

Author Details

Quentin Bramas
  • University of Strasbourg, ICUBE, CNRS, France
Stéphane Devismes
  • Université de Picardie Jules Verne, MIS UR 4290, Amiens, France
Anaïs Durand
  • University Clermont Auvergne, CNRS UMR 6158, LIMOS, Aubière, France
Pascal Lafourcade
  • University Clermont Auvergne, CNRS UMR 6158, LIMOS, Aubière, France
Anissa Lamani
  • University of Strasbourg, ICUBE, CNRS, France

Cite AsGet BibTex

Quentin Bramas, Stéphane Devismes, Anaïs Durand, Pascal Lafourcade, and Anissa Lamani. Beedroids: How Luminous Autonomous Swarms of UAVs Can Save the World?. In 11th International Conference on Fun with Algorithms (FUN 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 226, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
https://doi.org/10.4230/LIPIcs.FUN.2022.7

Abstract

Bee extinction is a great risk for humanity. To circumvent this ineluctable disaster, we propose to develop beedroids, i.e., small UAVs mimicking the behaviors of real bees. Those beedroids are endowed with very weak capabilities (short-range visibility sensors, no GPS, light with a few colors, ...). Like real bees, they have to self-organize together into swarms. Beedroid swarms will be deployed in cuboid-shaped greenhouse. Each beedroid swarm will have to indefinitely search for flowers to pollinate in its greenhouse. We model this problem as a perpetual exploration of a 3D grid by a swarm of beedroids. In this paper, we propose two optimal solutions to solve this problem and so to save humanity.

Subject Classification

ACM Subject Classification
  • Theory of computation → Distributed algorithms
Keywords
  • Bee extinction
  • luminous swarms of beedroids
  • perpetual flower pollination problem
  • greenhouse

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Lélia Blin, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil. Exclusive perpetual ring exploration without chirality. In Nancy A. Lynch and Alexander A. Shvartsman, editors, Distributed Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13-15, 2010. Proceedings, volume 6343 of Lecture Notes in Computer Science, pages 312-327, Boston, Massachusetts, USA, September 2010. Springer. Google Scholar
  2. François Bonnet, Alessia Milani, Maria Potop-Butucaru, and Sébastien Tixeuil. Asynchronous exclusive perpetual grid exploration without sense of direction. In Antonio Fernández Anta, editor, Proceedings of International Conference on Principles of Distributed Systems (OPODIS 2011), number 7109 in Lecture Notes in Computer Science (LNCS), pages 251-265, Toulouse, France, December 2011. Springer Berlin / Heidelberg. URL: http://www.springerlink.com/content/9l3v424157681707/.
  3. Quentin Bramas. Animation of the first algorithm, 2022. URL: https://bramas.pages.unistra.fr/robot-grid-exploration-simulator/?/robot-grid-exploration-simulator/algo/finite-grid/chirality/range-1/3-robots-5-colors.web-algo.
  4. Quentin Bramas. Animation of the second algorithm, 2022. URL: https://bramas.pages.unistra.fr/robot-grid-exploration-simulator/?/robot-grid-exploration-simulator/algo/finite-grid/chirality/range-2/algo-5-robots-oblivious.web-algo.
  5. Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. Infinite grid exploration by disoriented robots. In Chryssis Georgiou and Rupak Majumdar, editors, Networked Systems - 8th International Conference, NETYS 2020, Marrakech, Morocco, June 3-5, 2020, Proceedings, volume 12129 of Lecture Notes in Computer Science, pages 129-145. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-67087-0_9.
  6. Quentin Bramas, Stéphane Devismes, and Pascal Lafourcade. Optimal Exclusive Perpetual Grid Exploration by Luminous Myopic Opaque Robots with Common Chirality. In ICDCN'21: International Conference on Distributed Computing and Networking, Virtual Event, pages 76-85, Nara, Japan, 5-8 january 2021. ACM. Google Scholar
  7. Quentin Bramas, Pascal Lafourcade, and Stéphane Devismes. Finding water on poleless using melomaniac myopic chameleon robots. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms, FUN 2021, May 30 to June 1, 2021, Favignana Island, Sicily, Italy, volume 157 of LIPIcs, pages 6:1-6:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. Google Scholar
  8. Ajoy Kumar Datta, Anissa Lamani, Lawrence L. Larmore, and Franck Petit. Enabling ring exploration with myopic oblivious robots. In 2015 IEEE International Parallel and Distributed Processing Symposium Workshop, IPDPS 2015, pages 490-499, Hyderabad, India, May 25-29, 2015 2015. IEEE Computer Society. Google Scholar
  9. Stéphane Devismes, Anissa Lamani, Franck Petit, Pascal Raymond, and Sébastien Tixeuil. Terminating exploration of A grid by an optimal number of asynchronous oblivious robots. Comput. J., 64(1):132-154, 2021. URL: https://doi.org/10.1093/comjnl/bxz166.
  10. Stéphane Devismes, Anissa Lamani, Franck Petit, and Sébastien Tixeuil. Optimal torus exploration by oblivious robots. Computing, 101(9):1241-1264, 2019. Google Scholar
  11. Stéphane Devismes, Franck Petit, and Sébastien Tixeuil. Optimal probabilistic ring exploration by semi-synchronous oblivious robots. Theoretical Computer Science (TCS), 498:10-27, 2013. Google Scholar
  12. Yoann Dieudonné, Franck Petit, and Vincent Villain. Leader election problem versus pattern formation problem. In Nancy A. Lynch and Alexander A. Shvartsman, editors, Distributed Computing, 24th International Symposium, DISC 2010, volume 6343 of Lecture Notes in Computer Science, pages 267-281, Cambridge, MA, USA, september 13-15 2010. Springer. Google Scholar
  13. Stefan Dobrev, Lata Narayanan, Jaroslav Opatrny, and Denis Pankratov. Exploration of high-dimensional grids by finite automata. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 139:1-139:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. Google Scholar
  14. Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Remembering without memory: Tree exploration by asynchronous oblivious robots. Theor. Comput. Sci., 411(14-15):1583-1598, 2010. URL: https://doi.org/10.1016/j.tcs.2010.01.007.
  15. Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. How many oblivious robots can explore a line. Inf. Process. Lett., 111(20):1027-1031, 2011. URL: https://doi.org/10.1016/j.ipl.2011.07.018.
  16. Paola Flocchini, David Ilcinkas, Andrzej Pelc, and Nicola Santoro. Computing without communicating: Ring exploration by asynchronous oblivious robots. Algorithmica, 65(3):562-583, 2013. Google Scholar
  17. Fukuhito Ooshita and Sébastien Tixeuil. Ring exploration with myopic luminous robots. In Taisuke Izumi and Petr Kuznetsov, editors, Stabilization, Safety, and Security of Distributed Systems - 20th International Symposium, SSS 2018, volume 11201 of Lecture Notes in Computer Science, pages 301-316, Tokyo, Japan, november 4-7 2018. Springer. Google Scholar
  18. David Peleg. Distributed coordination algorithms for mobile robot swarms: New directions and challenges. In Ajit Pal, Ajay D. Kshemkalyani, Rajeev Kumar, and Arobinda Gupta, editors, Distributed Computing - IWDC 2005, pages 1-12, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. Google Scholar
  19. Arthur Rauch, Quentin Bramas, Stéphane Devismes, Pascal Lafourcade, and Anissa Lamani. Optimal exclusive perpetual grid exploration by luminous myopic robots without common chirality. In Karima Echihabi and Roland Meyer, editors, Networked Systems - 9th International Conference, NETYS 2021, Virtual Event, May 19-21, 2021, Proceedings, volume 12754 of Lecture Notes in Computer Science, pages 95-110. Springer, 2021. Google Scholar
  20. Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. Comput., 28(4):1347-1363, 1999. Google Scholar