Hamiltonian Paths and Cycles in NP-Complete Puzzles

Authors Marnix Deurloo , Mitchell Donkers, Mieke Maarse, Benjamin G. Rin , Karen Schutte



PDF
Thumbnail PDF

File

LIPIcs.FUN.2024.11.pdf
  • Filesize: 2.52 MB
  • 25 pages

Document Identifiers

Author Details

Marnix Deurloo
  • Utrecht University, The Netherlands
Mitchell Donkers
  • Utrecht University, The Netherlands
Mieke Maarse
  • Utrecht University, The Netherlands
Benjamin G. Rin
  • Utrecht University, The Netherlands
Karen Schutte
  • Utrecht University, The Netherlands

Acknowledgements

We would like to thank Hein Duijf, Jonathan Grube, Rosalie Iemhoff, Dominik Klein, Michael Moortgat, and the anonymous referees for their helpful comments and suggestions.

Cite AsGet BibTex

Marnix Deurloo, Mitchell Donkers, Mieke Maarse, Benjamin G. Rin, and Karen Schutte. Hamiltonian Paths and Cycles in NP-Complete Puzzles. In 12th International Conference on Fun with Algorithms (FUN 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 291, pp. 11:1-11:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.FUN.2024.11

Abstract

We show that several pen-and-paper puzzles are NP-complete by giving polynomial-time reductions from the Hamiltonian path and Hamiltonian cycle problems on grid graphs with maximum degree 3. The puzzles include Dotchi Loop, Chains, Linesweeper, Arukone{}₃ (also called Numberlink₃), and Araf. In addition, we show that this type of proof can still be used to prove the NP-completeness of Dotchi Loop even when the available puzzle instances are heavily restricted. Together, these results suggest that this approach holds promise in general for finding NP-completeness proofs of many pen-and-paper puzzles.

Subject Classification

ACM Subject Classification
  • Theory of computation → Problems, reductions and completeness
Keywords
  • Hamiltonicity
  • NP-completeness
  • complexity theory
  • pen-and-paper puzzles

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Aaron B. Adcock, Erik D. Demaine, Martin L. Demaine, Michael P. O'Brien, Felix Reidl, Fernando Sánchez Villaamil, and Blair D. Sullivan. Zig-Zag Numberlink is NP-complete. Journal of Information Processing, 23(3):239-245, 2015. URL: https://doi.org/10.2197/IPSJJIP.23.239.
  2. Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and Jayson Lynch. Tatamibari is NP-complete. In Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms (FUN 2021), volume 157 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1-1:24, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.FUN.2021.1.
  3. Michael Buro. Simple Amazons endgames and their connection to Hamilton circuits in cubic subgrid graphs. In T. Anthony Marsland and Ian Frank, editors, Computers and Games, Second International Conference, CG 2000, Hamamatsu, Japan, October 26-28, 2000, Revised Papers, volume 2063 of Lecture Notes in Computer Science, pages 250-261. Springer, 2001. URL: https://doi.org/10.1007/3-540-45579-5_17.
  4. Erik D. Demaine, Jayson Lynch, Mikhail Rudoy, and Yushi Uno. Yin-Yang Puzzles are NP-complete. In Meng He and Don Sheehy, editors, Proceedings of the 33rd Canadian Conference on Computational Geometry, CCCG 2021, August 10-12, 2021, Dalhousie University, Halifax, Nova Scotia, Canada, pages 97-106, 2021. Google Scholar
  5. Marnix Deurloo. On the NP-completeness of Dotchi Loop and restricted sets thereof. Bachelor’s thesis, Utrecht University, 2023. Google Scholar
  6. Mitchell Donkers. The NP-completeness of pen and paper puzzles. Bachelor’s thesis, Utrecht University, 2021. URL: https://studenttheses.uu.nl/handle/20.500.12932/1383.
  7. Markus Holzer and Oliver Ruepp. The troubles of interior design-A complexity analysis of the game Heyawake. In Pierluigi Crescenzi, Giuseppe Prencipe, and Geppino Pucci, editors, Fun with Algorithms, 4th International Conference, FUN 2007, Castiglioncello, Italy, June 3-5, 2007, Proceedings, volume 4475 of Lecture Notes in Computer Science, pages 198-212. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-72914-3_18.
  8. Otto Janko and Angela Janko. Araf. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Araf/index.htm.
  9. Otto Janko and Angela Janko. Arukone. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Arukone/index.htm.
  10. Otto Janko and Angela Janko. Arukone². Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Arukone-2/index.htm.
  11. Otto Janko and Angela Janko. Arukone³. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Arukone-3/index.htm.
  12. Otto Janko and Angela Janko. Dotchi loop. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Dotchi-Loop/index.htm.
  13. Otto Janko and Angela Janko. Ketten. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Ketten/index.htm.
  14. Otto Janko and Angela Janko. Ketten, nr. 7. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Ketten/007.a.htm.
  15. Otto Janko and Angela Janko. Linesweeper. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Linesweeper/index.htm.
  16. Otto Janko and Angela Janko. Linesweeper, nr. 082. Accessed on 2024-02-20. URL: https://www.janko.at/Raetsel/Linesweeper/082.a.htm.
  17. Richard Kaye. Minesweeper is NP-complete. The Mathematical Intelligencer, 22:9-15, 2000. URL: https://doi.org/10.1007/BF03025367.
  18. Jonas Kölker. Kurodoko is NP-complete. Journal of Information Processing, 20(3):694-706, 2012. URL: https://doi.org/10.2197/ipsjjip.20.694.
  19. Kotsuma Kouichi and Takenaga Yasuhiko. NP-completeness and enumeration of Number Link puzzle. IEICE Technical Report. Theoretical Foundations of Computing, 109(465):1-7, 2010. Google Scholar
  20. Mieke Maarse. The NP-completeness of some lesser known logic puzzles. Bachelor’s thesis, Utrecht University, 2019. URL: https://studenttheses.uu.nl/handle/20.500.12932/33867.
  21. Jak Marshall. Play my puzzle game: Linesweeper. September 30, 2010. URL: https://103percent.blogspot.com/2010/09/play-my-new-puzzle-game.html.
  22. Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related to the travelling salesman problem. Journal of Algorithms, 5(2):231-246, June 1984. URL: https://doi.org/10.1016/0196-6774(84)90029-4.
  23. Karen Schutte. The NP-completeness of three logic puzzles. Bachelor’s thesis, Utrecht University, 2021. Google Scholar
  24. Allan Scott, Ulrike Stege, and Iris Rooij. Minesweeper may not be NP-complete but is hard nonetheless. The Mathematical Intelligencer, 33.4:5-17, 2011. URL: https://doi.org/10.1007/s00283-011-9256-x.
  25. Hadyn Tang. A framework for loop and path puzzle satisfiability NP-hardness results, 2022. URL: https://arxiv.org/abs/2202.02046.
  26. Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solution and its application to puzzles. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 86-A(5):1052-1060, 2003. URL: http://search.ieice.org/bin/summary.php?id=e86-a_5_1052.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail