The Parameterized Complexity Of Extending Stack Layouts

Authors Thomas Depian , Simon D. Fink , Robert Ganian , Martin Nöllenburg



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.12.pdf
  • Filesize: 1.73 MB
  • 17 pages

Document Identifiers

Author Details

Thomas Depian
  • Algorithms and Complexity Group, TU Wien, Austria
Simon D. Fink
  • Algorithms and Complexity Group, TU Wien, Austria
Robert Ganian
  • Algorithms and Complexity Group, TU Wien, Austria
Martin Nöllenburg
  • Algorithms and Complexity Group, TU Wien, Austria

Cite AsGet BibTex

Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg. The Parameterized Complexity Of Extending Stack Layouts. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.12

Abstract

An 𝓁-page stack layout (also known as an 𝓁-page book embedding) of a graph is a linear order of the vertex set together with a partition of the edge set into 𝓁 stacks (or pages), such that the endpoints of no two edges on the same stack alternate. We study the problem of extending a given partial 𝓁-page stack layout into a complete one, which can be seen as a natural generalization of the classical NP-hard problem of computing a stack layout of an input graph from scratch. Given the inherent intractability of the problem, we focus on identifying tractable fragments through the refined lens of parameterized complexity analysis. Our results paint a detailed and surprisingly rich complexity-theoretic landscape of the problem which includes the identification of paraNP-hard, W[1]-hard and XP-tractable, as well as fixed-parameter tractable fragments of stack layout extension via a natural sequence of parameterizations.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Mathematics of computing → Graphs and surfaces
Keywords
  • Stack Layout
  • Drawing Extension
  • Parameterized Complexity
  • Book Embedding

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, Vít Jelínek, Jan Kratochvíl, Maurizio Patrignani, and Ignaz Rutter. Testing Planarity of Partially Embedded Graphs. ACM Transactions on Algorithms, 11(4):1-42, 2015. URL: https://doi.org/10.1145/2629341.
  2. Patrizio Angelini, Ignaz Rutter, and T. P. Sandhya. Extending Partial Orthogonal Drawings. In David Auber and Pavel Valtr, editors, Proc. 28th International Symposium on Graph Drawing and Network Visualization (GD'20), volume 12590 of Lecture Notes in Computer Science, pages 265-278. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-68766-3_21.
  3. Patrizio Angelini, Ignaz Rutter, and T. P. Sandhya. Extending Partial Orthogonal Drawings. Journal of Graph Algorithms and Applications, 25(1):581-602, 2021. URL: https://doi.org/10.7155/jgaa.00573.
  4. Michael Baur and Ulrik Brandes. Crossing Reduction in Circular Layouts. In Juraj Hromkovič, Manfred Nagl, and Bernhard Westfechtel, editors, Proc. 30th International Workshop on Graph-Theoretic Concepts in Computer Science (WG'04), volume 3353 of Lecture Notes in Computer Science, pages 332-343. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-30559-0_28.
  5. Michael A. Bekos, Michael Kaufmann, Fabian Klute, Sergey Pupyrev, Chrysanthi N. Raftopoulou, and Torsten Ueckerdt. Four Pages Are Indeed Necessary for Planar Graphs. Journal of Computational Geometry, 11(1):332-353, 2020. URL: https://doi.org/10.20382/JOCG.V11I1A12.
  6. Frank Bernhart and Paul C. Kainen. The Book Thickness of a Graph. Journal of Combinatorial Theory, Series B, 27(3):320-331, 1979. URL: https://doi.org/10.1016/0095-8956(79)90021-2.
  7. Sujoy Bhore, Giordano Da Lozzo, Fabrizio Montecchiani, and Martin Nöllenburg. On the Upward Book Thickness Problem: Combinatorial and Complexity Results. In Helen C. Purchase and Ignaz Rutter, editors, Proc. 29th International Symposium on Graph Drawing and Network Visualization (GD'21), volume 12868 of Lecture Notes in Computer Science, pages 242-256. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-92931-2_18.
  8. Sujoy Bhore, Giordano Da Lozzo, Fabrizio Montecchiani, and Martin Nöllenburg. On the Upward Book Thickness Problem: Combinatorial and Complexity Results. European Journal of Combinatorics, 110:103662, 2023. URL: https://doi.org/10.1016/j.ejc.2022.103662.
  9. Sujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, and Martin Nöllenburg. Extending Orthogonal Planar Graph Drawings Is Fixed-Parameter Tractable. In Erin W. Chambers and Joachim Gudmundsson, editors, Proc. 39th International Symposium on Computational Geometry (SoCG'23), volume 258 of LIPIcs, pages 18:1-18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.18.
  10. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized Algorithms for Book Embedding Problems. In Daniel Archambault and Csaba D. Tóth, editors, Proc. 27h International Symposium on Graph Drawing and Network Visualization (GD'19), volume 11904 of Lecture Notes in Computer Science, pages 365-378. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_28.
  11. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized Algorithms for Book Embedding Problems. Journal of Graph Algorithms and Applications, 24(4):603-620, 2020. URL: https://doi.org/10.7155/jgaa.00526.
  12. Tomasz Bilski. Embedding graphs in books: a survey. IEE Proceedings E (Computers and Digital Techniques), 139(2):134, 1992. URL: https://doi.org/10.1049/ip-e.1992.0021.
  13. Guido Brückner and Ignaz Rutter. Partial and Constrained Level Planarity. In Philip N. Klein, editor, Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA'17), pages 2000-2011. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.130.
  14. Fan R. K. Chung, Frank Thomson Leighton, and Arnold L. Rosenberg. Embedding Graphs in Books: A Layout Problem with Applications to VLSI Design. SIAM Journal on Algebraic Discrete Methods, 8(1):33-58, 1987. URL: https://doi.org/10.1137/0608002.
  15. Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. URL: https://doi.org/10.1007/978-3-319-21275-3.
  16. Giordano Da Lozzo, Giuseppe Di Battista, and Fabrizio Frati. Extending Upward Planar Graph Drawings. Computational Geometry Theory and Applications, 91:101668, 2020. URL: https://doi.org/10.1016/j.comgeo.2020.101668.
  17. Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg. The Parameterized Complexity of Extending Stack Layouts, 2024. URL: https://doi.org/10.48550/arXiv.2409.02833.
  18. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate Texts in Mathematics. Springer, 2012. Google Scholar
  19. Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer, 2013. URL: https://doi.org/10.1007/978-1-4471-5559-1.
  20. Vida Dujmović and David R. Wood. On Linear Layouts of Graphs. Discrete Mathematics & Theoretical Computer Science, Vol. 6 no. 2, 2004. URL: https://doi.org/10.46298/dmtcs.317.
  21. Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending Partial 1-Planar Drawings. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, Proc. 47th International Colloquium on Automata, Languages and Programming (ICALP'20), volume 168 of LIPIcs, pages 43:1-43:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.ICALP.2020.43.
  22. Eduard Eiben, Robert Ganian, Thekla Hamm, Fabian Klute, and Martin Nöllenburg. Extending Nearly Complete 1-Planar Drawings in Polynomial Time. In Javier Esparza and Daniel Král', editors, Proc. 45th Mathematical Foundations of Computer Science (MFCS'20), volume 170 of LIPIcs, pages 31:1-31:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPICS.MFCS.2020.31.
  23. Robert Ganian, Thekla Hamm, Fabian Klute, Irene Parada, and Birgit Vogtenhuber. Crossing-Optimal Extension of Simple Drawings. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, Proc. 48th International Colloquium on Automata, Languages and Programming (ICALP'21), volume 198 of LIPIcs, pages 72:1-72:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPICS.ICALP.2021.72.
  24. Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki. A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, Proc. 51st International Colloquium on Automata, Languages and Programming (ICALP'24), volume 297 of LIPIcs, pages 68:1-68:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https://doi.org/10.4230/LIPICS.ICALP.2024.68.
  25. Emden R. Gansner and Yehuda Koren. Improved Circular Layouts. In Michael Kaufmann and Dorothea Wagner, editors, Proc. 14th International Symposium on Graph Drawing and Network Visualization (GD'06), volume 4372 of Lecture Notes in Computer Science, pages 386-398. Springer, 2006. URL: https://doi.org/10.1007/978-3-540-70904-6_37.
  26. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  27. Christian Haslinger and Peter F. Stadler. RNA Structures with Pseudo-knots: Graph-theoretical, Combinatorial, and Statistical Properties. Bulletin of Mathematical Biology, 61(3):437-467, 1999. URL: https://doi.org/10.1006/bulm.1998.0085.
  28. Vít Jelínek, Jan Kratochvíl, and Ignaz Rutter. A Kuratowski-Type Theorem for Planarity of Partially Embedded Graphs. Computational Geometry Theory and Applications, 46(4):466-492, 2013. URL: https://doi.org/10.1016/j.comgeo.2012.07.005.
  29. Yunlong Liu, Jie Chen, Jingui Huang, and Jianxin Wang. On Parameterized Algorithms for Fixed-Order Book Thickness with respect to the Pathwidth of the Vertex Ordering. Theoretical Computer Science, 873:16-24, 2021. URL: https://doi.org/10.1016/J.TCS.2021.04.021.
  30. Taylor L. Ollmann. On the Book Thicknesses of Various Graphs. In Proc. 4th Southeastern Conference on Combinatorics, Graph Theory and Computing, volume 8, page 459, 1973. Google Scholar
  31. Maurizio Patrignani. On Extending a Partial Straight-Line Drawing. In Patrick Healy and Nikola S. Nikolov, editors, Proc. 13th International Symposium on Graph Drawing and Network Visualization (GD'05), volume 3843 of Lecture Notes in Computer Science, pages 380-385. Springer, 2005. URL: https://doi.org/10.1007/11618058_34.
  32. Maurizio Patrignani. On Extending a Partial Straight-Line Drawing. International Journal of Foundations of Computer Science, 17(5):1061-1070, 2006. URL: https://doi.org/10.1142/S0129054106004261.
  33. Sergey Pupyrev. A Collection of Existing Results on Stack and Queue Numbers, 2023. Last accessed: 2024-05-20. URL: https://spupyrev.github.io/linearlayouts.html.
  34. Elena Stöhr. The pagewidth of trivalent planar graphs. Discrete Mathematics, 89(1):43-49, 1991. URL: https://doi.org/10.1016/0012-365X(91)90398-L.
  35. Elena Stöhr. A Trade-off between Page Number and Page Width of Book Embeddings of Graphs. Information and Computation, 79(2):155-162, 1988. URL: https://doi.org/10.1016/0890-5401(88)90036-3.
  36. Walter Unger. On the k-Colouring of Circle-Graphs. In Robert Cori and Martin Wirsing, editors, Proc. 5th Symposium on Theoretical Aspects of Computer Science (STACS'88), volume 294 of Lecture Notes in Computer Science, pages 61-72. Springer, 1988. URL: https://doi.org/10.1007/BFB0035832.
  37. Walter Unger. The Complexity of Colouring Circle Graphs (Extended Abstract). In Alain Finkel and Matthias Jantzen, editors, Proc. 9th Symposium on Theoretical Aspects of Computer Science (STACS'92), volume 577 of Lecture Notes in Computer Science, pages 389-400. Springer, 1992. URL: https://doi.org/10.1007/3-540-55210-3_199.
  38. Martin Wattenberg. Arc Diagrams: Visualizing Structure in Strings. In Pak Chung Wong and Keith Andrews, editors, Proc. 8th IEEE Information Visualization Conference (InfoVis'02), pages 110-116. IEEE Computer Society, 2002. URL: https://doi.org/10.1109/INFVIS.2002.1173155.
  39. Avi Widgerson. The Complexity of the Hamiltonian Circuit Problem for Maximal Planar Graphs. Technical Report 298, Princeton University, 1982. Google Scholar
  40. Mihalis Yannakakis. Embedding Planar Graphs in Four Pages. Journal of Computer and System Sciences, 38(1):36-67, 1989. URL: https://doi.org/10.1016/0022-0000(89)90032-9.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail