Bundling-Aware Graph Drawing

Authors Daniel Archambault , Giuseppe Liotta , Martin Nöllenburg , Tommaso Piselli , Alessandra Tappini , Markus Wallinger



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.15.pdf
  • Filesize: 5.85 MB
  • 19 pages

Document Identifiers

Author Details

Daniel Archambault
  • Newcastle University, UK
Giuseppe Liotta
  • University of Perugia, Italy
Martin Nöllenburg
  • TU Wien, Austria
Tommaso Piselli
  • University of Perugia, Italy
Alessandra Tappini
  • University of Perugia, Italy
Markus Wallinger
  • TU Munich, Germany

Cite AsGet BibTex

Daniel Archambault, Giuseppe Liotta, Martin Nöllenburg, Tommaso Piselli, Alessandra Tappini, and Markus Wallinger. Bundling-Aware Graph Drawing. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.15

Abstract

Edge bundling algorithms significantly improve the visualization of dense graphs by reducing the clutter of many edges visible on screen by bundling them together. As such, bundling is often viewed as a post-processing step applied to a drawing, and the vast majority of edge bundling algorithms consider a graph and its drawing as input. Another way of thinking about edge bundling is to simultaneously optimize both the drawing and the bundling. In this paper, we investigate methods to simultaneously optimize a graph drawing and its bundling. We describe an algorithmic framework which consists of three main steps, namely Filter, Draw, and Bundle. We then propose two alternative implementations and experimentally compare them against the state-of-the-art approach and the simple idea of drawing and subsequently bundling the graph. The experiments confirm that bundled drawings created by our framework outperform previous approaches according to standard quality metrics for edge bundling.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Graph algorithms
  • Human-centered computing → Graph drawings
Keywords
  • Edge Bundling
  • Experimental Comparison
  • Graph Sparsification

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José Soares. On sparse spanners of weighted graphs. Discret. Comput. Geom., 9:81-100, 1993. URL: https://doi.org/10.1007/BF02189308.
  2. Benjamin Bach, Nathalie Henry Riche, Christophe Hurter, Kim Marriott, and Tim Dwyer. Towards unambiguous edge bundling: Investigating confluent drawings for network visualization. IEEE Trans. Vis. Comput. Graph., 23(1):541-550, 2017. URL: https://doi.org/10.1109/TVCG.2016.2598958.
  3. Ulrik Brandes. A faster algorithm for betweenness centrality. J. Math. Sociol., 25(2):163-177, 2001. URL: https://doi.org/10.1080/0022250X.2001.9990249.
  4. Weiwei Cui, Hong Zhou, Huamin Qu, Pak Chung Wong, and Xiaoming Li. Geometry-based edge clustering for graph visualization. IEEE Trans. Vis. Comput. Graph., 14(6):1277-1284, 2008. URL: https://doi.org/10.1109/TVCG.2008.135.
  5. Emilio Di Giacomo, Walter Didimo, Luca Grilli, Giuseppe Liotta, and Salvatore Agostino Romeo. Heuristics for the maximum 2-layer RAC subgraph problem. Comput. J., 58(5):1085-1098, 2015. URL: https://doi.org/10.1093/COMJNL/BXU017.
  6. Matthew Dickerson, David Eppstein, Michael T. Goodrich, and Jeremy Y. Meng. Confluent drawings: Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl., 9(1):31-52, 2005. URL: https://doi.org/10.7155/jgaa.00099.
  7. Matthew Dickerson, David Eppstein, Michael T. Goodrich, and Jeremy Yu Meng. Confluent drawings: Visualizing non-planar diagrams in a planar way. In Giuseppe Liotta, editor, Graph Drawing (GD'03), volume 2912 of LNCS, pages 1-12. Springer, 2003. URL: https://doi.org/10.1007/978-3-540-24595-7_1.
  8. Walter Didimo, Giuseppe Liotta, and Salvatore Agostino Romeo. A graph drawing application to web site traffic analysis. J. Graph Algorithms Appl., 15(2):229-251, 2011. URL: https://doi.org/10.7155/JGAA.00224.
  9. Ozan Ersoy, Christophe Hurter, Fernando Vieira Paulovich, Gabriel Cantareiro, and Alexandru C. Telea. Skeleton-based edge bundling for graph visualization. IEEE Trans. Vis. Comput. Graph., 17(12):2364-2373, 2011. URL: https://doi.org/10.1109/TVCG.2011.233.
  10. Emden R. Gansner, Yifan Hu, Stephen C. North, and Carlos Eduardo Scheidegger. Multilevel agglomerative edge bundling for visualizing large graphs. In Pacific Visualization Symposium (PacificVis'11), pages 187-194. IEEE, 2011. URL: https://doi.org/10.1109/PACIFICVIS.2011.5742389.
  11. Emden R. Gansner, Yehuda Koren, and Stephen C. North. Graph drawing by stress majorization. In János Pach, editor, Graph Drawing (GD'04), volume 3383 of LNCS, pages 239-250. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-31843-9_25.
  12. Michelle Girvan and Mark E. J. Newman. Community structure in social and biological networks. Proc. Natl. Acad. Sci., 99(12):7821-7826, 2002. URL: https://doi.org/10.1073/pnas.122653799.
  13. Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics, and function using networkx. In Gäel Varoquaux, Travis Vaught, and Jarrod Millman, editors, Python in Science Conference (SciPy'08), pages 11-15, 2008. Google Scholar
  14. Michael Hirsch, Henk Meijer, and David Rappaport. Biclique edge cover graphs and confluent drawings. In Graph Drawing (GD'06), volume 4372 of LNCS, pages 405-416. Springer, 2007. URL: https://doi.org/10.1007/978-3-540-70904-6_39.
  15. Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First steps. Soc. Netw., 5(2):109-137, 1983. Google Scholar
  16. Danny Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Trans. Vis. Comput. Graph., 12(5):741-748, 2006. URL: https://doi.org/10.1109/TVCG.2006.147.
  17. Danny Holten and Jarke J. van Wijk. Force-directed edge bundling for graph visualization. Comput. Graph. Forum, 28(3):983-990, 2009. URL: https://doi.org/10.1111/j.1467-8659.2009.01450.x.
  18. Weidong Huang, Peter Eades, and Seok-Hee Hong. A graph reading behavior: Geodesic-path tendency. In Pacific Visualization Symposium (PacificVis'09), pages 137-144. IEEE, 2009. URL: https://doi.org/10.1109/PACIFICVIS.2009.4906848.
  19. Christophe Hurter, Ozan Ersoy, and Alexandru Telea. Graph bundling by kernel density estimation. Comput. Graph. Forum, 31(3):865-874, 2012. URL: https://doi.org/10.1111/j.1467-8659.2012.03079.x.
  20. Antoine Lambert, Romain Bourqui, and David Auber. Winding Roads: Routing edges into bundles. Comput. Graph. Forum, 29(3):853-862, 2010. URL: https://doi.org/10.1111/j.1467-8659.2009.01700.x.
  21. Clement Lee and Darren J. Wilkinson. A review of stochastic block models and extensions for graph clustering. Appl. Netw. Sci., 4(1):122, 2019. URL: https://doi.org/10.1007/S41109-019-0232-2.
  22. Antoine Lhuillier, Christophe Hurter, and Alexandru C. Telea. FFTEB: edge bundling of huge graphs by the fast fourier transform. In Pacific Visualization Symposium (PacificVis'17), pages 190-199. IEEE, 2017. URL: https://doi.org/10.1109/PACIFICVIS.2017.8031594.
  23. Antoine Lhuillier, Christophe Hurter, and Alexandru C. Telea. State of the art in edge and trail bundling techniques. Comput. Graph. Forum, 36(3):619-645, 2017. URL: https://doi.org/10.1111/cgf.13213.
  24. Sheng-Jie Luo, Chun-Liang Liu, Bing-Yu Chen, and Kwan-Liu Ma. Ambiguity-free edge-bundling for interactive graph visualization. IEEE Trans. Vis. Comput. Graph., 18(5):810-821, 2012. URL: https://doi.org/10.1109/TVCG.2011.104.
  25. Amyra Meidiana, Seok-Hee Hong, and Peter Eades. Shape-faithful graph drawings. In Patrizio Angelini and Reinhard von Hanxleden, editors, Graph Drawing and Network Visualization (GD'22), volume 13764 of LNCS, pages 93-108. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_8.
  26. Quan Hoang Nguyen, Peter Eades, and Seok-Hee Hong. On the faithfulness of graph visualizations. In Pacific Visualization Symposium (PacificVis'13), pages 209-216. IEEE, 2013. URL: https://doi.org/10.1109/PacificVis.2013.6596147.
  27. Quan Hoang Nguyen, Seok-Hee Hong, and Peter Eades. TGI-EB: A new framework for edge bundling integrating topology, geometry and importance. In Graph Drawing (GD'11), volume 7034 of LNCS, pages 123-135. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25878-7_13.
  28. Bobo Nick, Conrad Lee, Pádraig Cunningham, and Ulrik Brandes. Simmelian backbones: amplifying hidden homophily in facebook networks. In Jon G. Rokne and Christos Faloutsos, editors, Advances in Social Networks Analysis and Mining (ASONAM'13), pages 525-532. ACM, 2013. URL: https://doi.org/10.1145/2492517.2492569.
  29. Sergey Pupyrev, Lev Nachmanson, Sergey Bereg, and Alexander E. Holroyd. Edge routing with ordered bundles. In Marc J. van Kreveld and Bettina Speckmann, editors, Graph Drawing (GD'11), volume 7034 of LNCS, pages 136-147. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25878-7_14.
  30. Sergey Pupyrev, Lev Nachmanson, Sergey Bereg, and Alexander E. Holroyd. Edge routing with ordered bundles. Comput. Geom., 52:18-33, 2016. URL: https://doi.org/10.1016/j.comgeo.2015.10.005.
  31. David Selassie, Brandon Heller, and Jeffrey Heer. Divided edge bundling for directional network data. IEEE Trans. Vis. Comput. Graph., 17(12):2354-2363, 2011. URL: https://doi.org/10.1109/TVCG.2011.190.
  32. Alexandru Telea and Ozan Ersoy. Image-based edge bundles: Simplified visualization of large graphs. Comput. Graph. Forum, 29(3):843-852, 2010. URL: https://doi.org/10.1111/j.1467-8659.2009.01680.x.
  33. Naoko Toeda, Rina Nakazawa, Takayuki Itoh, Takafumi Saito, and Daniel Archambault. Convergent drawing for mutually connected directed graphs. J. Vis. Lang. Comput., 43:83-90, 2017. URL: https://doi.org/10.1016/j.jvlc.2017.09.004.
  34. Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1983. Google Scholar
  35. Matthew van der Zwan, Valeriu Codreanu, and Alexandru C. Telea. CUBu: universal real-time bundling for large graphs. IEEE Trans. Vis. Comput. Graph., 22(12):2550-2563, 2016. URL: https://doi.org/10.1109/TVCG.2016.2515611.
  36. Markus Wallinger. FDB Framework. Software (visited on 2024-09-13). URL: https://doi.org/10.17605/OSF.IO/G4XQW.
  37. Markus Wallinger, Daniel Archambault, David Auber, Martin Nöllenburg, and Jaakko Peltonen. Edge-path bundling: A less ambiguous edge bundling approach. IEEE Trans. Vis. Comput. Graph., 28(1):313-323, 2022. URL: https://doi.org/10.1109/TVCG.2021.3114795.
  38. Markus Wallinger, Daniel Archambault, David Auber, Martin Nöllenburg, and Jaakko Peltonen. Faster edge-path bundling through graph spanners. Comput. Graph. Forum, 42(6), 2023. URL: https://doi.org/10.1111/CGF.14789.
  39. Jieting Wu, Lina Yu, and Hongfeng Yu. Texture-based edge bundling: A web-based approach for interactively visualizing large graphs. In Big Data (BigData'15), pages 2501-2508. IEEE, 2015. URL: https://doi.org/10.1109/BigData.2015.7364046.
  40. Jonathan X. Zheng, Samraat Pawar, and Dan F. M. Goodman. Graph drawing by stochastic gradient descent. IEEE Trans. Vis. Comput. Graph., 25(9):2738-2748, 2019. URL: https://doi.org/10.1109/TVCG.2018.2859997.
  41. Jonathan X. Zheng, Samraat Pawar, and Dan M. Goodman. Further towards unambiguous edge bundling: Investigating power-confluent drawings for network visualization. IEEE Trans. Vis. Comput. Graph., 27(03):2244-2249, 2021. URL: https://doi.org/10.1109/TVCG.2019.2944619.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail