GraphTrials: Visual Proofs of Graph Properties

Authors Henry Förster , Felix Klesen , Tim Dwyer , Peter Eades , Seok-Hee Hong , Stephen G. Kobourov , Giuseppe Liotta , Kazuo Misue , Fabrizio Montecchiani , Alexander Pastukhov , Falk Schreiber



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.16.pdf
  • Filesize: 1.05 MB
  • 18 pages

Document Identifiers

Author Details

Henry Förster
  • Department of Computer Science, University of Tübingen, Germany
Felix Klesen
  • Institute of Computer Science, University of Würzburg, Germany
Tim Dwyer
  • Faculty of Information Technology, Monash University, Australia
Peter Eades
  • School of Computer Science, The University of Sydney, Australia
Seok-Hee Hong
  • School of Computer Science, The University of Sydney, Australia
Stephen G. Kobourov
  • Department of Computer Science, University of Arizona, Tucson, AZ, USA
Giuseppe Liotta
  • Department of Engineering, University of Perugia, Italy
Kazuo Misue
  • Department of Computer Science, University of Tsukuba, Japan
Fabrizio Montecchiani
  • Department of Engineering, University of Perugia, Italy
Alexander Pastukhov
  • Department of Psychology, University of Bamberg, Germany
Falk Schreiber
  • Department of Computer Science, University of Konstanz, Germany

Acknowledgements

This work was initiated at Dagstuhl seminar 23051 "Perception in Network Visualization". We thank the organizers for making this fruitful interdisciplinary exchange possible and all participants for interesting discussions and insights during the seminar week.

Cite AsGet BibTex

Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades, Seok-Hee Hong, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani, Alexander Pastukhov, and Falk Schreiber. GraphTrials: Visual Proofs of Graph Properties. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.16

Abstract

Graph and network visualization supports exploration, analysis and communication of relational data arising in many domains: from biological and social networks, to transportation and powergrid systems. With the arrival of AI-based question-answering tools, issues of trustworthiness and explainability of generated answers motivate a greater role for visualization. In the context of graphs, we see the need for visualizations that can convince a critical audience that an assertion about the graph under analysis is valid. The requirements for such representations that convey precisely one specific graph property are quite different from standard network visualization criteria which optimize general aesthetics and readability. In this paper, we aim to provide a comprehensive introduction to visual proofs of graph properties and a foundation for further research in the area. We present a framework that defines what it means to visually prove a graph property. In the process, we introduce the notion of a visual certificate, that is, a specialized faithful graph visualization that leverages the viewer’s perception, in particular, pre-attentive processing (e. g. via pop-out effects), to verify a given assertion about the represented graph. We also discuss the relationships between visual complexity, cognitive load and complexity theory, and propose a classification based on visual proof complexity. Finally, we provide examples of visual certificates for problems in different visual proof complexity classes.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Visualization theory, concepts and paradigms
  • Human-centered computing → Graph drawings
  • Human-centered computing → Information visualization
Keywords
  • Graph Visualization
  • Theory of Visualization
  • Visual Proof

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Abu Reyan Ahmed, Felice De Luca, Sabin Devkota, Stephen G. Kobourov, and Mingwei Li. Multicriteria scalable graph drawing via stochastic gradient descent, (SGD)superscript2. IEEE Trans. Vis. Comp. Graph., 28(6):2388-2399, 2022. URL: https://doi.org/10.1109/TVCG.2022.3155564.
  2. Martin Aigner and Günter M. Ziegler. Five-coloring plane graphs. In Proofs from THE BOOK (3. ed.). Springer, 2004. URL: https://doi.org/10.1007/978-3-662-05412-3_30.
  3. Lorenzo Angori, Walter Didimo, Fabrizio Montecchiani, Daniele Pagliuca, and Alessandra Tappini. Chordlink: A new hybrid visualization model. In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Proceedings, volume 11904 of Lecture Notes in Computer Science, pages 276-290. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_22.
  4. Lorenzo Angori, Walter Didimo, Fabrizio Montecchiani, Daniele Pagliuca, and Alessandra Tappini. Hybrid graph visualizations with chordlink: Algorithms, experiments, and applications. IEEE Trans. Vis. Comp. Graph., 28(2):1288-1300, 2022. URL: https://doi.org/10.1109/TVCG.2020.3016055.
  5. K. Appel and W. Haken. Special announcement. Discret. Math., 16(2):179-180, 1976. URL: https://doi.org/10.1016/0012-365X(76)90147-3.
  6. Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge University Press, 2009. URL: https://doi.org/10.1017/CBO9780511804090.
  7. Michael Behrisch, Benjamin Bach, Nathalie Henry Riche, Tobias Schreck, and Jean-Daniel Fekete. Matrix reordering methods for table and network visualization. Comput. Graph. Forum, 35(3):693-716, 2016. URL: https://doi.org/10.1111/cgf.12935.
  8. Michael A. Bekos, Henry Förster, Christian Geckeler, Lukas Holländer, Michael Kaufmann, Amadäus M. Spallek, and Jan Splett. A heuristic approach towards drawings of graphs with high crossing resolution. In Therese Biedl and Andreas Kerren, editors, Graph Drawing and Network Visualization - 26th International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings, volume 11282 of Lecture Notes in Computer Science, pages 271-285. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-04414-5_19.
  9. Michael A. Bekos, Henry Förster, Christian Geckeler, Lukas Holländer, Michael Kaufmann, Amadäus M. Spallek, and Jan Splett. A heuristic approach towards drawings of graphs with high crossing resolution. Comput. J., 64(1):7-26, 2021. URL: https://doi.org/10.1093/comjnl/bxz133.
  10. Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial optimization with reinforcement learning. In Intl. Conf. Learning Represent. ICLR. OpenReview.net, 2017. URL: https://openreview.net/forum?id=Bk9mxlSFx.
  11. Liliana Bounegru, Tommaso Venturini, Jonathan Gray, and Mathieu Jacomy. Narrating networks. Digital Journalism, 5(6):699-730, 2017. URL: https://doi.org/10.1080/21670811.2016.1186497.
  12. James Robert Brown. Philosophy of Mathematics: A Contemporary Introduction to the World of Proofs and Pictures. Routledge, 2nd edition, 2008. URL: https://doi.org/10.4324/9780203932964.
  13. Michael Burch, Kiet Bennema ten Brinke, Adrien Castella, Ghassen Karray, Sebastiaan Peters, Vasil Shteriyanov, and Rinse Vlasvinkel. Guiding graph exploration by combining layouts and reorderings. In Michael Burch, Michel A. Westenberg, Quang Vinh Nguyen, and Ying Zhao, editors, VINCI: Intl. Symp. Vis. Inform. Comm. Interact., pages 25:1-25:5. ACM, 2020. URL: https://doi.org/10.1145/3430036.3430064.
  14. Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Readings in information visualization: using vision to think. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999. Google Scholar
  15. Davide Ceneda, Theresia Gschwandtner, and Silvia Miksch. A review of guidance approaches in visual data analysis: A multifocal perspective. Comput. Graph. Forum, 38(3):861-879, 2019. URL: https://doi.org/10.1111/CGF.13730.
  16. Jaegul Choo and Shixia Liu. Visual analytics for explainable deep learning. IEEE Comput. Graph. Appl., 38(4):84-92, 2018. URL: https://doi.org/10.1109/MCG.2018.042731661.
  17. Sabin Devkota, Abu Reyan Ahmed, Felice De Luca, Katherine E. Isaacs, and Stephen G. Kobourov. Stress-plus-x (SPX) graph layout. In Daniel Archambault and Csaba D. Tóth, editors, Intl. Symp. Graph Drawing, volume 11904 of LNCS, pages 291-304. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_23.
  18. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. Google Scholar
  19. Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer. Area, curve complexity, and crossing resolution of non-planar graph drawings. In David Eppstein and Emden R. Gansner, editors, Graph Drawing, 17th International Symposium, GD 2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers, volume 5849 of Lecture Notes in Computer Science, pages 15-20. Springer, 2009. URL: https://doi.org/10.1007/978-3-642-11805-0_4.
  20. Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer. Area, curve complexity, and crossing resolution of non-planar graph drawings. Theory Comput. Syst., 49(3):565-575, 2011. URL: https://doi.org/10.1007/s00224-010-9275-6.
  21. Walter Didimo, Luca Giamminonni, Giuseppe Liotta, Fabrizio Montecchiani, and Daniele Pagliuca. A visual analytics system to support tax evasion discovery. Decis. Support Syst., 110:71-83, 2018. URL: https://doi.org/10.1016/j.dss.2018.03.008.
  22. Walter Didimo, Luca Grilli, Giuseppe Liotta, Lorenzo Menconi, Fabrizio Montecchiani, and Daniele Pagliuca. Combining network visualization and data mining for tax risk assessment. IEEE Access, 8:16073-16086, 2020. URL: https://doi.org/10.1109/ACCESS.2020.2967974.
  23. Walter Didimo, Luca Grilli, Giuseppe Liotta, Fabrizio Montecchiani, and Daniele Pagliuca. Visual querying and analysis of temporal fiscal networks. Inf. Sci., 505:406-421, 2019. URL: https://doi.org/10.1016/j.ins.2019.07.097.
  24. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979. Google Scholar
  25. Robert Gove. Gragnostics: Fast, interpretable features for comparing graphs. In Ebad Banissi, Anna Ursyn, Mark W. McK. Bannatyne, Nuno Datia, Rita Francese, Muhammad Sarfraz, Theodor G. Wyeld, Fatma Bouali, Gilles Venturini, Hanane Azzag, Mustapha Lebbah, Marjan Trutschl, Urska Cvek, Heimo Müller, Minoru Nakayama, Sebastian Kernbach, Loredana Caruccio, Michele Risi, Ugo Erra, Autilia Vitiello, and Veronica Rossano, editors, Intl. Conf. Inform. Visual. IV, pages 201-209. IEEE, 2019. URL: https://doi.org/10.1109/IV.2019.00042.
  26. Robert Gove. Gragnostics: Evaluating fast, interpretable structural graph features for classification and visual analytics. In Boris Kovalerchuk, Kawa Nazemi, Răzvan Andonie, Nuno Datia, and Ebad Banissi, editors, Integrating Artificial Intelligence and Visualization for Visual Knowledge Discovery, pages 311-336. Springer, 2022. URL: https://doi.org/10.1007/978-3-030-93119-3_12.
  27. Kieran Healy. Data Visualization: A Practical Introduction. Princeton University Press, 2018. Google Scholar
  28. Nathalie Henry and Jean-Daniel Fekete. MatrixExplorer: a dual-representation system to explore social networks. IEEE Trans. Vis. Comp. Graph., 12(5):677-684, 2006. URL: https://doi.org/10.1109/TVCG.2006.160.
  29. Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. Nodetrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comp. Graph., 13(6):1302-1309, 2007. URL: https://doi.org/10.1109/TVCG.2007.70582.
  30. R. Houtkamp, H. Spekreijse, and P. R. Roelfsema. A gradual spread of attention. Perception & Psychophysics, 65(7):1136-1144, 2003. URL: https://doi.org/10.3758/BF03194840.
  31. Maurice Janssen, Marc Lauvenberg, Wesley van der Ven, Twan Bloebaum, and Herman Kingma. Perception threshold for tilt. Otol Neurotol., 32(5):818-825, 2011. URL: https://doi.org/10.1097/MAO.0b013e31821c6c7b.
  32. Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs. Inf. Process. Lett., 31(1):7-15, 1989. URL: https://doi.org/10.1016/0020-0190(89)90102-6.
  33. Sylvain Lazard, William J. Lenhart, and Giuseppe Liotta. On the edge-length ratio of outerplanar graphs. In Fabrizio Frati and Kwan-Liu Ma, editors, Graph Drawing and Network Visualization - 25th International Symposium, GD 2017, Boston, MA, USA, September 25-27, 2017, Revised Selected Papers, volume 10692 of Lecture Notes in Computer Science, pages 17-23. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-73915-1_2.
  34. Sylvain Lazard, William J. Lenhart, and Giuseppe Liotta. On the edge-length ratio of outerplanar graphs. Theor. Comput. Sci., 770:88-94, 2019. URL: https://doi.org/10.1016/j.tcs.2018.10.002.
  35. Steven J. Luck and Andrew Richard Hollingworth. Visual Memory. Oxford University Press US, 2008. URL: https://doi.org/10.1093/acprof:oso/9780195305487.001.0001.
  36. Ross M. McConnell, Kurt Mehlhorn, Stefan Näher, and Pascal Schweitzer. Certifying algorithms. Comput. Sci. Review, 5(2):119-161, 2011. URL: https://doi.org/10.1016/j.cosrev.2010.09.009.
  37. R.B. Nelsen. Proofs Without Words: Exercises in Visual Thinking. Classroom resource materials. Mathematical Association of America, 1993. URL: https://books.google.de/books?id=Kx2cjyzTIYkC.
  38. Quan Hoang Nguyen, Peter Eades, and Seok-Hee Hong. On the faithfulness of graph visualizations. In Sheelagh Carpendale, Wei Chen, and Seok-Hee Hong, editors, IEEE PacificVis, pages 209-216, 2013. URL: https://doi.org/10.1109/PACIFICVIS.2013.6596147.
  39. Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lect. Notes Ser. Computing. World Scientific, 2004. URL: https://doi.org/10.1142/5648.
  40. Oxford English Dictionary. four-colour | four-color, adj. In Oxford English Dictionary. Oxford University Press, 2023. URL: https://doi.org/10.1093/OED/3549282820.
  41. Peter Pirolli and Stuart Card. The sensemaking process and leverage points for analyst technology as identified through cognitive task analysis. In Proc. Intl. Conf. Intelligence Analysis, volume 5, pages 2-4. McLean, VA, USA, 2005. Google Scholar
  42. H Purchase. Metrics for graph drawing aesthetics. J. Vis. Lang. & Comput., 13(5):501-516, 2002. URL: https://doi.org/10.1016/S1045-926X(02)90232-6.
  43. D. Sacha, A. Stoffel, F. Stoffel, B. C. Kwon, G. Ellis, and D. A. Keim. Knowledge generation model for visual analytics. IEEE Trans. Vis. Comp. Graph., 20(12):1604-1613, 2014. 10.1109/TVCG.2014.2346481. URL: https://doi.org/10.1109/TVCG.2014.2346481.
  44. J. M. Six and I. G. Tollis. A framework for circular drawings of networks. In Jan Kratochvíl, editor, Proc. 7th Intl. Symp. Graph Drawing, volume 1731 of LNCS, pages 107-116. Springer, 1999. URL: https://doi.org/10.1007/3-540-46648-7_11.
  45. Sicheng Song, Chenhui Li, Dong Li, Juntong Chen, and Changbo Wang. Graphdecoder: Recovering diverse network graphs from visualization images via attention-aware learning. IEEE Trans. Vis. Comp. Graph., pages 1-17, 2022. URL: https://doi.org/10.1109/TVCG.2022.3225554.
  46. Roberto Tamassia, editor. Handbook on Graph Drawing and Visualization. Chapman and Hall, 2013. URL: https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125.
  47. Edward Rolf Tufte. The Visual Display of Quantitative Information. Graphics Press, 1992. Google Scholar
  48. Edward Rolf Tufte. Visual explanations - images and quantities, evidence and narrative. Graphics Press, 1997. URL: https://www.worldcat.org/oclc/36234417.
  49. Edward Rolf Tufte. The Visual Display of Quantitative Information. Graphics Press, 2001. Google Scholar
  50. Thomas Tymoczko. The four-color problem and its philosophical significance. J. Philosophy, 76(2):57-83, 1979. Google Scholar
  51. Bret Victor. Scientific communication as sequential art. http://worrydream.com/ScientificCommunicationAsSequentialArt/, 2011.
  52. Johan Wagemans, James H. Elder, Michael Kubovy, Stephen E. Palmer, Mary A. Peterson, Manish Singh, and Rüdiger von der Heydt. A century of gestalt psychology in visual perception: I. perceptual grouping and figure–ground organization. Psychol. Bulletin, 138(6):1172-1217, 2012. URL: https://doi.org/10.1037/a0029333.
  53. Colin Ware. Information Visualization – Perception for Design. Morgan Kaufmann, 2004. Google Scholar
  54. Colin Ware. Visual Thinking For Information Design. Morgan Kaufmann, 2021. URL: https://doi.org/10.1016/C2016-0-01395-5.
  55. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393:440-442, 1998. URL: https://doi.org/10.1038/30918.
  56. Hadley Wickham, Dianne Cook, Heike Hofmann, and Andreas Buja. Graphical inference for InfoVis. IEEE Trans. Vis. Comp. Graph., 16(6):973-979, 2010. URL: https://doi.org/10.1109/TVCG.2010.161.
  57. Wikipedia. Mathematical proof. https://en.wikipedia.org/wiki/Mathematical_proof##Visual_proof, 2023.
  58. Jeremy Wolfe. Visual search. Cur. Biol., 20(8):R346-R349, 2010. URL: https://doi.org/10.1016/j.cub.2010.02.016.
  59. yWorks. yEd - graph editor. https://www.yworks.com/products/yed, 2023.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail