Connectivity-Faithful Graph Drawing

Authors Amyra Meidiana , Seok-Hee Hong , Yongcheng Jing



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.17.pdf
  • Filesize: 3.24 MB
  • 17 pages

Document Identifiers

Author Details

Amyra Meidiana
  • University of Sydney, Australia
Seok-Hee Hong
  • University of Sydney, Australia
Yongcheng Jing
  • University of Sydney, Australia

Cite AsGet BibTex

Amyra Meidiana, Seok-Hee Hong, and Yongcheng Jing. Connectivity-Faithful Graph Drawing. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.17

Abstract

Connectivity is one of the important fundamental structural properties of graphs, and a graph drawing D should faithfully represent the connectivity structure of the underlying graph G. This paper investigates connectivity-faithful graph drawing leveraging the famous Nagamochi-Ibaraki (NI) algorithm, which computes a sparsification G_NI, preserving the k-connectivity of a k-connected graph G. Specifically, we first present CFNI, a divide-and-conquer algorithm, which computes a sparsification G_CFNI, which preserves the global k-connectivity of a graph G and the local h-connectivity of the h-connected components of G. We then present CFGD, a connectivity-faithful graph drawing algorithm based on CFNI, which faithfully displays the global and local connectivity structure of G. Extensive experiments demonstrate that CFNI outperforms NI with 66% improvement in the connectivity-related sampling quality metrics and 73% improvement in proxy quality metrics. Consequently, CFGD outperforms a naive application of NI for graph drawing, in particular with 62% improvement in stress metrics. Moreover, CFGD runs 51% faster than drawing the whole graph G, with a similar quality.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Graph drawings
Keywords
  • Graph connectivity
  • Faithful graph drawing
  • Graph sparsification

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, 1999. Google Scholar
  2. Alain Barrat, Marc Barthelemy, Romualdo Pastor-Satorras, and Alessandro Vespignani. The architecture of complex weighted networks. Proceedings of the National Academy of Sciences, 101(11):3747-3752, March 2004. Google Scholar
  3. Shijun Cai, Seok-Hee Hong, Amyra Meidiana, Peter Eades, and Daniel Keim. Cluster-faithful graph visualization: New metrics and algorithms. In IEEE PacificVis, pages 192-201, 2024. URL: https://doi.org/10.1109/PACIFICVIS60374.2024.00029.
  4. Shijun Cai, Amyra Meidiana, and Seok-Hee Hong. Dnc: Dynamic neighborhood change faithfulness metrics. In EuroVis, pages 49-53, 2022. URL: https://doi.org/10.2312/EVS.20221092.
  5. Indra Mohan Chakravarti, Radha Govira Laha, and Jogabrata Roy. Handbook of methods of applied statistics. Wiley Series in Probability and Mathematical Statistics, 1967. Google Scholar
  6. Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997. Google Scholar
  7. Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection. Transactions on Mathematical Software, 38(1):1, 2011. Google Scholar
  8. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR, 1998. Google Scholar
  9. Peter Eades, Seok-Hee Hong, An Nguyen, and Karsten Klein. Shape-based quality metrics for large graph visualization. JGAA, 21(1):29-53, 2017. URL: https://doi.org/10.7155/JGAA.00405.
  10. Peter Eades, Quan Nguyen, and Seok-Hee Hong. Drawing big graphs using spectral sparsification. In Graph Drawing, pages 272-286, 2017. Google Scholar
  11. Linton C. Freeman. Centrality in social networks conceptual clarification. Social Networks, 1(3):215-239, 1978. Google Scholar
  12. Emden R Gansner, Yehuda Koren, and Stephen North. Graph drawing by stress majorization. In Graph Drawing, pages 239-250, 2005. Google Scholar
  13. Michael R Garey and David S Johnson. Computers and Intractability, volume 174. freeman San Francisco, 1979. Google Scholar
  14. Robert Gove. A random sampling o(n) force-calculation algorithm for graph layouts. Computer Graphics Forum, 38(3):739-751, 2019. URL: https://doi.org/10.1111/CGF.13724.
  15. Seok-Hee Hong, Amyra Meidiana, James Wood, Juan Pablo Ataides, Peter Eades, and Kunsoo Park. dgg, drng, dsc: New degree-based shape-based faithfulness metrics for large and complex graph visualization. In IEEE PacificVis, pages 51-60, 2022. URL: https://doi.org/10.1109/PACIFICVIS53943.2022.00014.
  16. Seok-Hee Hong, Quan Nguyen, Amyra Meidiana, Jiaxi Li, and Peter Eades. BC tree-based proxy graphs for visualization of big graphs. In IEEE PacificVis, pages 11-20, 2018. Google Scholar
  17. John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM, 16(6):372-378, 1973. Google Scholar
  18. John E Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components. SIAM Journal on computing, 2(3):135-158, 1973. URL: https://doi.org/10.1137/0202012.
  19. Jingming Hu, Tuan Tran Chu, Seok-Hee Hong, Jialu Chen, Amyra Meidiana, Marnijati Torkel, Peter Eades, and Kwan-Liu Ma. BC tree-based spectral sampling for big complex network visualization. Appl. Netw. Sci., 6(1):60, 2021. URL: https://doi.org/10.1007/S41109-021-00405-3.
  20. Jingming Hu, Seok-Hee Hong, and Peter Eades. Spectral vertex sampling for big complex graphs. In Complex Networks, pages 216-227, 2019. URL: https://doi.org/10.1007/978-3-030-36683-4_18.
  21. Pili Hu and Wing Cheong Lau. A survey and taxonomy of graph sampling. arXiv preprint arXiv:1308.5865, 2013. URL: https://arxiv.org/abs/1308.5865.
  22. Tomihisa Kamada, Satoru Kawai, et al. An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1):7-15, 1989. URL: https://doi.org/10.1016/0020-0190(89)90102-6.
  23. Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In ACM SIGKDD, pages 631-636, 2006. URL: https://doi.org/10.1145/1150402.1150479.
  24. Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.
  25. Michael R Marner, Ross T Smith, Bruce H Thomas, Karsten Klein, Peter Eades, and Seok-Hee Hong. GION: interactively untangling large graphs on wall-sized displays. In Graph Drawing, pages 113-124, 2014. URL: https://doi.org/10.1007/978-3-662-45803-7_10.
  26. Rafael Messias Martins, Rosane Minghim, Alexandru C Telea, et al. Explaining neighborhood preservation for multidimensional projections. In CGVC, pages 7-14, 2015. Google Scholar
  27. David W Matula. Determining edge connectivity in o(nm). In SCFS, pages 249-251, 1987. URL: https://doi.org/10.1109/SFCS.1987.19.
  28. Amyra Meidiana, Seok-Hee Hong, Shijun Cai, Marnijati Torkel, and Peter Eades. Sublinearforce: Fully sublinear-time force computation for large complex graph drawing. IEEE TVCG, 30(7):3386-3399, 2024. URL: https://doi.org/10.1109/TVCG.2022.3233287.
  29. Amyra Meidiana, Seok-Hee Hong, and Peter Eades. New quality metrics for dynamic graph drawing. In Graph Drawing, pages 450-465, 2020. URL: https://doi.org/10.1007/978-3-030-68766-3_35.
  30. Amyra Meidiana, Seok-Hee Hong, and Peter Eades. Shape-faithful graph drawings. In Graph Drawing, pages 93-108, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_8.
  31. Amyra Meidiana, Seok-Hee Hong, Peter Eades, and Daniel Keim. A quality metric for visualization of clusters in graphs. In Graph Drawing, pages 125-138, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_10.
  32. Amyra Meidiana, Seok-Hee Hong, Peter Eades, and Daniel Keim. Quality metrics for symmetric graph drawings. In IEEE PacificVis, pages 11-15, 2020. URL: https://doi.org/10.1109/PACIFICVIS48177.2020.1022.
  33. Amyra Meidiana, Seok-Hee Hong, Peter Eades, and Daniel A. Keim. Automorphism faithfulness metrics for symmetric graph drawings. IEEE TVCG, 30(7):3241-3255, 2024. URL: https://doi.org/10.1109/TVCG.2022.3229354.
  34. Amyra Meidiana, Seok-Hee Hong, Jiajun Huang, Peter Eades, and Kwan-Liu Ma. Topology-based spectral sparsification. In LDAV, pages 73-82, 2019. URL: https://doi.org/10.1109/LDAV48142.2019.8944358.
  35. Amyra Meidiana, Seok-Hee Hong, and Yongcheng Jing. Connectivity-Faithful Graph Sparsification for Drawing Large and Complex Graphs. Submitted, 2024. Google Scholar
  36. Amyra Meidiana, Seok-Hee Hong, Marnijati Torkel, Shijun Cai, and Peter Eades. Sublinear Time Force Computation for Big Complex Network Visualization. Computer Graphics Forum, 39(3):579-591, 2020. URL: https://doi.org/10.1111/CGF.14003.
  37. Amyra Meidiana, Seok-Hee Hong, Marnijati Torkel, Shijun Cai, and Peter Eades. Sublinear time force computation for big complex network visualization. Computer Graphics Forum, 39(3):579-591, 2020. URL: https://doi.org/10.1111/CGF.14003.
  38. Amyra Meidiana, James Wood, and Seok-Hee Hong. Sublinear-time algorithms for stress minimization in graph drawing. In IEEE PacificVis, pages 166-175, 2021. URL: https://doi.org/10.1109/PACIFICVIS52677.2021.00030.
  39. Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of ak-connected graph. Algorithmica, 7(1):583-596, 1992. URL: https://doi.org/10.1007/BF01758778.
  40. Hiroshi Nagamochi and Toshihide Ibaraki. Algorithmic Aspects of Graph Connectivity, volume 123 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2008. URL: https://doi.org/10.1017/CBO9780511721649.
  41. Dalit Naor, Dan Gusfield, and Charles Martel. A fast algorithm for optimally increasing the edge connectivity. SIAM Journal on Computing, 26(4):1139-1165, 1997. URL: https://doi.org/10.1137/S0097539792234226.
  42. M. E. J. Newman. Mixing patterns in networks. Physical Review E, 67(2), February 2003. Google Scholar
  43. Quan Nguyen, Peter Eades, and Seok-Hee Hong. On the faithfulness of graph visualizations. In IEEE PacificVis, pages 209-216, 2013. Google Scholar
  44. Quan Hoang Nguyen, Seok-Hee Hong, Peter Eades, and Amyra Meidiana. Proxy graph: Visual quality metrics of big graph sampling. IEEE TVCG, 23(6):1600-1611, 2017. URL: https://doi.org/10.1109/TVCG.2017.2674999.
  45. Arlind Nocaj, Mark Ortmann, and Ulrik Brandes. Untangling hairballs - from 3 to 14 degrees of separation. In Graph Drawing, 2014. Google Scholar
  46. Mark Ortmann, Mirza Klimenta, and Ulrik Brandes. A sparse stress model. In Yifan Hu and Martin Nöllenburg, editors, Graph Drawing, pages 18-32, 2016. URL: https://doi.org/10.1007/978-3-319-50106-2_2.
  47. Jari Saramäki, Mikko Kivelä, Jukka-Pekka Onnela, Kimmo Kaski, and János Kertész. Generalizations of the clustering coefficient to weighted complex networks. Physical Review E, 75:027105, March 2007. Google Scholar
  48. Daniel A Spielman. Spectral graph theory and its applications. In IEEE FOCS, pages 29-38, 2007. URL: https://doi.org/10.1109/FOCS.2007.66.
  49. Daniel A Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on Computing, 40(4):981-1025, 2011. URL: https://doi.org/10.1137/08074489X.
  50. Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:395-416, 2007. URL: https://doi.org/10.1007/S11222-007-9033-Z.
  51. Yanhong Wu, Nan Cao, Daniel Archambault, Qiaomu Shen, Huamin Qu, and Weiwei Cui. Evaluation of graph sampling: A visualization perspective. IEEE TVCG, 23(1):401-410, 2016. URL: https://doi.org/10.1109/TVCG.2016.2598867.
  52. Jonathan X Zheng, Samraat Pawar, and Dan FM Goodman. Graph drawing by stochastic gradient descent. IEEE TVCG, 25(9):2738-2748, 2018. URL: https://doi.org/10.1109/TVCG.2018.2859997.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail