Weakly Leveled Planarity with Bounded Span

Authors Michael A. Bekos , Giordano Da Lozzo , Fabrizio Frati , Siddharth Gupta , Philipp Kindermann , Giuseppe Liotta , Ignaz Rutter , Ioannis G. Tollis



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.19.pdf
  • Filesize: 1.2 MB
  • 19 pages

Document Identifiers

Author Details

Michael A. Bekos
  • University of Ioannina, Greece
Giordano Da Lozzo
  • Roma Tre University, Italy
Fabrizio Frati
  • Roma Tre University, Italy
Siddharth Gupta
  • BITS Pilani, K K Birla Goa Campus, India
Philipp Kindermann
  • Trier University, Germany
Giuseppe Liotta
  • Perugia University, Italy
Ignaz Rutter
  • University of Passau, Germany
Ioannis G. Tollis
  • University of Crete, Heraklion, Greece

Acknowledgements

This work started at the Graph and Network Visualization Workshop 2023 (GNV '23), 25-30 June, Chania.

Cite AsGet BibTex

Michael A. Bekos, Giordano Da Lozzo, Fabrizio Frati, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Ignaz Rutter, and Ioannis G. Tollis. Weakly Leveled Planarity with Bounded Span. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 19:1-19:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.19

Abstract

This paper studies planar drawings of graphs in which each vertex is represented as a point along a sequence of horizontal lines, called levels, and each edge is either a horizontal segment or a strictly y-monotone curve. A graph is s-span weakly leveled planar if it admits such a drawing where the edges have span at most s; the span of an edge is the number of levels it touches minus one. We investigate the problem of computing s-span weakly leveled planar drawings from both the computational and the combinatorial perspectives. We prove the problem to be para-NP-hard with respect to its natural parameter s and investigate its complexity with respect to widely used structural parameters. We show the existence of a polynomial-size kernel with respect to vertex cover number and prove that the problem is FPT when parameterized by treedepth. We also present upper and lower bounds on the span for various graph classes. Notably, we show that cycle trees, a family of 2-outerplanar graphs generalizing Halin graphs, are Θ(log n)-span weakly leveled planar and 4-span weakly leveled planar when 3-connected. As a byproduct of these combinatorial results, we obtain improved bounds on the edge-length ratio of the graph families under consideration.

Subject Classification

ACM Subject Classification
  • Theory of computation → Fixed parameter tractability
  • Theory of computation → Computational geometry
  • Mathematics of computing → Graph algorithms
Keywords
  • Leveled planar graphs
  • edge span
  • graph drawing
  • edge-length ratio

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Martin Balko, Steven Chaplick, Robert Ganian, Siddharth Gupta, Michael Hoffmann, Pavel Valtr, and Alexander Wolff. Bounding and computing obstacle numbers of graphs. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 11:1-11:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.ESA.2022.11.
  2. Michael J. Bannister, William E. Devanny, Vida Dujmović, David Eppstein, and David R. Wood. Track layouts, layered path decompositions, and leveled planarity. Algorithmica, 81(4):1561-1583, 2019. URL: https://doi.org/10.1007/s00453-018-0487-5.
  3. Oliver Bastert and Christian Matuszewski. Layered drawings of digraphs. In Michael Kaufmann and Dorothea Wagner, editors, Drawing Graphs, Methods and Models, volume 2025 of Lecture Notes in Computer Science, pages 87-120. Springer, 1999. URL: https://doi.org/10.1007/3-540-44969-8_5.
  4. Michael Bekos, Giordano Da Lozzo, Fabrizio Frati, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Ignaz Rutter, and Ioannis G. Tollis. Weakly leveled planarity with bounded span, 2024. URL: https://arxiv.org/abs/2409.01889.
  5. Sujoy Bhore, Giordano Da Lozzo, Fabrizio Montecchiani, and Martin Nöllenburg. On the upward book thickness problem: Combinatorial and complexity results. In Helen C. Purchase and Ignaz Rutter, editors, Graph Drawing and Network Visualization - 29th International Symposium, GD 2021, Tübingen, Germany, September 14-17, 2021, Revised Selected Papers, volume 12868 of Lecture Notes in Computer Science, pages 242-256. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-92931-2_18.
  6. Sujoy Bhore, Giordano Da Lozzo, Fabrizio Montecchiani, and Martin Nöllenburg. On the upward book thickness problem: Combinatorial and complexity results. Eur. J. Comb., 110:103662, 2023. URL: https://doi.org/10.1016/J.EJC.2022.103662.
  7. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for book embedding problems. In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Proceedings, volume 11904 of Lecture Notes in Computer Science, pages 365-378. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_28.
  8. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for book embedding problems. J. Graph Algorithms Appl., 24(4):603-620, 2020. URL: https://doi.org/10.7155/JGAA.00526.
  9. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for queue layouts. In David Auber and Pavel Valtr, editors, Graph Drawing and Network Visualization - 28th International Symposium, GD 2020, Vancouver, BC, Canada, September 16-18, 2020, Revised Selected Papers, volume 12590 of Lecture Notes in Computer Science, pages 40-54. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-68766-3_4.
  10. Sujoy Bhore, Robert Ganian, Fabrizio Montecchiani, and Martin Nöllenburg. Parameterized algorithms for queue layouts. J. Graph Algorithms Appl., 26(3):335-352, 2022. URL: https://doi.org/10.7155/JGAA.00597.
  11. Therese Biedl. Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs. Discret. Comput. Geom., 45(1):141-160, 2011. URL: https://doi.org/10.1007/s00454-010-9310-z.
  12. Therese Biedl. Height-preserving transformations of planar graph drawings. In Christian A. Duncan and Antonios Symvonis, editors, 22nd International Symposium on Graph Drawing, GD 2014, September 24-26, 2014, Würzburg, Germany, volume 8871 of Lecture Notes in Computer Science, pages 380-391. Springer, 2014. URL: https://doi.org/10.1007/978-3-662-45803-7_32.
  13. Václav Blazej, Jirí Fiala, and Giuseppe Liotta. On the edge-length ratio of 2-trees. In David Auber and Pavel Valtr, editors, Graph Drawing and Network Visualization - 28th International Symposium, GD 2020, Vancouver, BC, Canada, September 16-18, 2020, Revised Selected Papers, volume 12590 of Lecture Notes in Computer Science, pages 85-98. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-68766-3_7.
  14. Václav Blazj, Jirí Fiala, and Giuseppe Liotta. On edge-length ratios of partial 2-trees. Int. J. Comput. Geom. Appl., 31(2-3):141-162, 2021. URL: https://doi.org/10.1142/S0218195921500072.
  15. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci., 209(1-2):1-45, 1998. URL: https://doi.org/10.1016/S0304-3975(97)00228-4.
  16. Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. Convex drawings of 3-connected plane graphs. In János Pach, editor, Graph Drawing, 12th International Symposium, GD 2004, New York, NY, USA, September 29 - October 2, 2004, Revised Selected Papers, volume 3383 of Lecture Notes in Computer Science, pages 60-70. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-31843-9_8.
  17. Nicolas Bonichon, Stefan Felsner, and Mohamed Mosbah. Convex drawings of 3-connected plane graphs. Algorithmica, 47(4):399-420, 2007. URL: https://doi.org/10.1007/s00453-006-0177-6.
  18. Manuel Borrazzo and Fabrizio Frati. On the edge-length ratio of planar graphs. In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Proceedings, volume 11904 of Lecture Notes in Computer Science, pages 165-178. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_13.
  19. Manuel Borrazzo and Fabrizio Frati. On the planar edge-length ratio of planar graphs. J. Comput. Geom., 11(1):137-155, 2020. URL: https://doi.org/10.20382/jocg.v11i1a6.
  20. Guido Brückner, Nadine Davina Krisam, and Tamara Mchedlidze. Level-planar drawings with few slopes. In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, Prague, Czech Republic, September 17-20, 2019, Proceedings, volume 11904 of Lecture Notes in Computer Science, pages 559-572. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_42.
  21. Guido Brückner, Nadine Davina Krisam, and Tamara Mchedlidze. Level-planar drawings with few slopes. Algorithmica, 84(1):176-196, 2022. URL: https://doi.org/10.1007/S00453-021-00884-X.
  22. Timothy M. Chan. Tree drawings revisited. Discret. Comput. Geom., 63(4):799-820, 2020. URL: https://doi.org/10.1007/S00454-019-00106-W.
  23. Steven Chaplick, Giordano Da Lozzo, Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Planar drawings with few slopes of halin graphs and nested pseudotrees. Algorithmica, 86(8):2413-2447, 2024. URL: https://doi.org/10.1007/S00453-024-01230-7.
  24. Steven Chaplick, Emilio Di Giacomo, Fabrizio Frati, Robert Ganian, Chrysanthi N. Raftopoulou, and Kirill Simonov. Parameterized algorithms for upward planarity. In Xavier Goaoc and Michael Kerber, editors, 38th International Symposium on Computational Geometry, SoCG 2022, June 7-10, 2022, Berlin, Germany, volume 224 of LIPIcs, pages 26:1-26:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPICS.SOCG.2022.26.
  25. Steven Chaplick, Giordano Da Lozzo, Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Planar drawings with few slopes of Halin graphs and nested pseudotrees. In Anna Lubiw and Mohammad R. Salavatipour, editors, 17th Algorithms and Data Structures Symposium, WADS 2021, August 9-11, 2021, Halifax, Nova Scotia, Canada, volume 12808 of Lecture Notes in Computer Science, pages 271-285. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-83508-8_20.
  26. Guillaume Chapuy, Éric Fusy, Omer Giménez, Bojan Mohar, and Marc Noy. Asymptotic enumeration and limit laws for graphs of fixed genus. J. Comb. Theory, Ser. A, 118(3):748-777, 2011. URL: https://doi.org/10.1016/J.JCTA.2010.11.014.
  27. Marek Chrobak and Goos Kant. Convex grid drawings of 3-connected planar graphs. Int. J. Comput. Geom. Appl., 7(3):211-223, 1997. URL: https://doi.org/10.1142/S0218195997000144.
  28. Pierluigi Crescenzi, Giuseppe Di Battista, and Adolfo Piperno. A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom., 2:187-200, 1992. URL: https://doi.org/10.1016/0925-7721(92)90021-J.
  29. Giordano Da Lozzo, William E. Devanny, David Eppstein, and Timothy Johnson. Square-contact representations of partial 2-trees and triconnected simply-nested graphs. In Yoshio Okamoto and Takeshi Tokuyama, editors, 28th International Symposium on Algorithms and Computation, ISAAC 2017, December 9-12, 2017, Phuket, Thailand, volume 92 of LIPIcs, pages 24:1-24:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2017.24.
  30. Hubert de Fraysseix, János Pach, and Richard Pollack. How to draw a planar graph on a grid. Combinatorica, 10(1):41-51, 1990. URL: https://doi.org/10.1007/BF02122694.
  31. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. Google Scholar
  32. Giuseppe Di Battista and Enrico Nardelli. Hierarchies and planarity theory. IEEE Trans. Syst. Man Cybern., 18(6):1035-1046, 1988. URL: https://doi.org/10.1109/21.23105.
  33. Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, Henk Meijer, Fabrizio Montecchiani, and Stephen Wismath. New bounds on the local and global edge-length ratio of planar graphs, 2023. Proceedings of the 40th European Workshop on Computational Geometry, EuroCG 2024. URL: https://doi.org/10.48550/arXiv.2311.14634.
  34. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  35. Vida Dujmović, Michael R. Fellows, Matthew Kitching, Giuseppe Liotta, Catherine McCartin, Naomi Nishimura, Prabhakar Ragde, Frances A. Rosamond, Sue Whitesides, and David R. Wood. On the parameterized complexity of layered graph drawing. Algorithmica, 52(2):267-292, 2008. URL: https://doi.org/10.1007/s00453-007-9151-1.
  36. Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1-22:38, 2020. URL: https://doi.org/10.1145/3385731.
  37. Vida Dujmović, Attila Pór, and David R. Wood. Track layouts of graphs. Discret. Math. Theor. Comput. Sci., 6(2):497-522, 2004. URL: https://doi.org/10.46298/DMTCS.315.
  38. Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line drawings on restricted integer grids in two and three dimensions. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph Drawing, 9th International Symposium, GD 2001 Vienna, Austria, September 23-26, 2001, Revised Papers, volume 2265 of Lecture Notes in Computer Science, pages 328-342. Springer, 2001. URL: https://doi.org/10.1007/3-540-45848-4_26.
  39. Stefan Felsner, Giuseppe Liotta, and Stephen K. Wismath. Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl., 7(4):363-398, 2003. URL: https://doi.org/10.7155/jgaa.00075.
  40. Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, 2019. URL: https://doi.org/10.1017/9781107415157.
  41. Michael Formann, Torben Hagerup, James Haralambides, Michael Kaufmann, Frank Thomson Leighton, Antonios Symvonis, Emo Welzl, and Gerhard J. Woeginger. Drawing graphs in the plane with high resolution. SIAM J. Comput., 22(5):1035-1052, 1993. URL: https://doi.org/10.1137/0222063.
  42. Fabrizio Frati. Lower bounds on the area requirements of series-parallel graphs. Discret. Math. Theor. Comput. Sci., 12(5):139-174, 2010. URL: https://doi.org/10.46298/dmtcs.500.
  43. István Fáry. On straight lines representation of planar graphs. Acta Sci. Math. (Szeged), 11:229-233, 1948. Google Scholar
  44. Lenwood S. Heath and Arnold L. Rosenberg. Laying out graphs using queues. SIAM J. Comput., 21(5):927-958, 1992. URL: https://doi.org/10.1137/0221055.
  45. Petr Hlinený and Abhisekh Sankaran. Exact crossing number parameterized by vertex cover. In Daniel Archambault and Csaba D. Tóth, editors, Graph Drawing and Network Visualization - 27th International Symposium, GD 2019, September 17-20, 2019, Prague, Czech Republic, volume 11904 of Lecture Notes in Computer Science, pages 307-319. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-35802-0_24.
  46. Michael Hoffmann, Marc J. van Kreveld, Vincent Kusters, and Günter Rote. Quality ratios of measures for graph drawing styles. In 26th Canadian Conference on Computational Geometry, CCCG 2014, August 11-13, 2014, Halifax, Nova Scotia, Canada. Carleton University, Ottawa, Canada, 2014. URL: http://www.cccg.ca/proceedings/2014/papers/paper05.pdf.
  47. John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs (preliminary report). In Robert L. Constable, Robert W. Ritchie, Jack W. Carlyle, and Michael A. Harrison, editors, 6th Annual ACM Symposium on Theory of Computing, STOC 1974, April 30 - May 2, 1974, Seattle, Washington, USA, pages 172-184. ACM, 1974. URL: https://doi.org/10.1145/800119.803896.
  48. Goos Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4-32, 1996. URL: https://doi.org/10.1007/BF02086606.
  49. Sylvain Lazard, William J. Lenhart, and Giuseppe Liotta. On the edge-length ratio of outerplanar graphs. In Fabrizio Frati and Kwan-Liu Ma, editors, Graph Drawing and Network Visualization - 25th International Symposium, GD 2017, Boston, MA, USA, September 25-27, 2017, Revised Selected Papers, volume 10692 of Lecture Notes in Computer Science, pages 17-23. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-73915-1_2.
  50. Sylvain Lazard, William J. Lenhart, and Giuseppe Liotta. On the edge-length ratio of outerplanar graphs. Theor. Comput. Sci., 770:88-94, 2019. URL: https://doi.org/10.1016/J.TCS.2018.10.002.
  51. Seth M. Malitz and Achilleas Papakostas. On the angular resolution of planar graphs. SIAM J. Discret. Math., 7(2):172-183, 1994. URL: https://doi.org/10.1137/S0895480193242931.
  52. Petra Scheffler. Die Baumweite von Graphen als ein Maßfür die Kompliziertheit algorithmischer Probleme. PhD thesis, Akademie der Wissenschafien der DDR, Berlin, 1989. Google Scholar
  53. Yossi Shiloach. Linear and Planar Arrangements of Graphs. PhD thesis, Weizmann Institute of Science, 1976. Google Scholar
  54. Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern., 11(2):109-125, 1981. URL: https://doi.org/10.1109/TSMC.1981.4308636.
  55. Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421-444, 1987. URL: https://doi.org/10.1137/0216030.
  56. Roberto Tamassia, editor. Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, 2013. URL: https://cs.brown.edu/people/rtamassi/gdhandbook.
  57. William Thomas Tutte. How to draw a graph. Pro. London Math. Society, 3(1):743-767, 1963. Google Scholar
  58. Meirav Zehavi. Parameterized analysis and crossing minimization problems. Comput. Sci. Rev., 45:100490, 2022. URL: https://doi.org/10.1016/J.COSREV.2022.100490.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail