LIPIcs.GD.2024.20.pdf
- Filesize: 0.85 MB
- 9 pages
We present singly-exponential quantum algorithms for the One-Sided Crossing Minimization (OSCM) problem. We show that OSCM can be viewed as a set problem amenable for exact algorithms with a quantum speedup with respect to their classical counterparts. First, we exploit the quantum dynamic programming framework of Ambainis et al. [Quantum Speedups for Exponential-Time Dynamic Programming Algorithms. SODA 2019] to devise a QRAM-based algorithm that solves OSCM in 𝒪^*(1.728ⁿ) time and space. Second, we use quantum divide and conquer to obtain an algorithm that solves OSCM without using QRAM in 𝒪^*(2ⁿ) time and polynomial space.
Feedback for Dagstuhl Publishing