Boundary Labeling in a Circular Orbit

Authors Annika Bonerath , Martin Nöllenburg , Soeren Terziadis , Markus Wallinger , Jules Wulms



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.22.pdf
  • Filesize: 3.65 MB
  • 17 pages

Document Identifiers

Author Details

Annika Bonerath
  • University of Bonn, Germany
Martin Nöllenburg
  • Algorithms and Complexity Group, TU Wien, Austria
Soeren Terziadis
  • TU Eindhoven, The Netherlands
Markus Wallinger
  • Chair for Efficient Algorithms, TU Munich, Germany
Jules Wulms
  • TU Eindhoven, The Netherlands

Cite AsGet BibTex

Annika Bonerath, Martin Nöllenburg, Soeren Terziadis, Markus Wallinger, and Jules Wulms. Boundary Labeling in a Circular Orbit. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.22

Abstract

Boundary labeling is a well-known method for displaying short textual labels for a set of point features in a figure alongside the boundary of that figure. Labels and their corresponding points are connected via crossing-free leaders. We propose orbital boundary labeling as a new variant of the problem, in which (i) the figure is enclosed by a circular contour and (ii) the labels are placed as disjoint circular arcs in an annulus-shaped orbit around the contour. The algorithmic objective is to compute an orbital boundary labeling with the minimum total leader length. We identify several parameters that define the corresponding problem space: two leader types (straight or orbital-radial), label size and order, presence of candidate label positions, and constraints on where a leader attaches to its label. Our results provide polynomial-time algorithms for many variants and NP-hardness for others, using a variety of geometric and combinatorial insights.

Subject Classification

ACM Subject Classification
  • Human-centered computing → Visualization
  • Theory of computation → Computational geometry
Keywords
  • External labeling
  • Orthoradial drawing
  • NP-hardness
  • Polynomial algorithms

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label placement by maximum independent set in rectangles. Computational Geometry: Theory and Applications, 11(3-4):209-218, 1998. URL: https://doi.org/10.1016/S0925-7721(98)00028-5.
  2. Sarah E. Battersby, John E. Stewart, Ana Lopez-De Fede, Kevin C. Remington, and Kathy Mayfield-Smith. Ring maps for spatial visualization of multivariate epidemiological data. Journal of Maps, 7(1):564-572, 2011. URL: https://doi.org/10.4113/jom.2011.1182.
  3. Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. Boundary labeling: Models and efficient algorithms for rectangular maps. In János Pach, editor, Graph Drawing (GD'04), volume 3383 of LNCS, pages 49-59. Springer, 2004. URL: https://doi.org/10.1007/978-3-540-31843-9_7.
  4. Michael A Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander Wolff. Boundary labeling: Models and efficient algorithms for rectangular maps. Computational Geometry, 36(3):215-236, 2007. URL: https://doi.org/10.1016/J.COMGEO.2006.05.003.
  5. Michael A. Bekos, Benjamin Niedermann, and Martin Nöllenburg. External Labeling: Fundamental Concepts and Algorithmic Techniques. Synthesis Lectures on Visualization. Morgan & Claypool Publishers, 2021. URL: https://doi.org/10.2200/S01115ED1V01Y202107VIS014.
  6. Marc Benkert, Herman Haverkort, Moritz Kroll, and Martin Nöllenburg. Algorithms for multi-criteria one-sided boundary labeling. In Seok-Hee Hong and Takao Nishizeki, editors, Graph Drawing (GD'07), volume 4875 of LNCS, pages 243-254. Springer, 2008. URL: https://doi.org/10.1007/978-3-540-77537-9_25.
  7. Marc Benkert, Herman J Haverkort, Moritz Kroll, and Martin Nöllenburg. Algorithms for multi-criteria boundary labeling. Journal of Graph Algorithms and Applications, 13(3):289-317, 2009. URL: https://doi.org/10.7155/jgaa.00189.
  8. Annika Bonerath, Martin Nöllenburg, Soeren Terziadis, Markus Wallinger, and Jules Wulms. On orbital labeling with circular contours, 2024. https://arxiv.org/abs/2403.19052, URL: https://doi.org/10.48550/arXiv.2403.19052.
  9. Martin Fink, Jan-Henrik Haunert, André Schulz, Joachim Spoerhase, and Alexander Wolff. Algorithms for labeling focus regions. IEEE Transactions on Visualization and Computer Graphics, 18(12):2583-2592, 2012. URL: https://doi.org/10.1109/TVCG.2012.193.
  10. Michael Formann and Frank Wagner. A packing problem with applications to lettering of maps. In Symposium on Computational Geometry (SoCG'91), pages 281-288. ACM, 1991. URL: https://doi.org/10.1145/109648.109680.
  11. Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34(3):596-615, 1987. URL: https://doi.org/10.1145/28869.28874.
  12. Andreas Gemsa, Jan-Henrik Haunert, and Martin Nöllenburg. Multirow boundary-labeling algorithms for panorama images. ACM Transactions on Spatial Algorithms and Systems, 1(1):1-30, 2015. URL: https://doi.org/10.1145/2794299.
  13. Jan-Henrik Haunert and Tobias Hermes. Labeling circular focus regions based on a tractable case of maximum weight independent set of rectangles. In Falko Schmid, Christian Kray, and Holger Fritze, editors, SIGSPATIAL International Workshop on Interacting with Maps (MapInteract@GIS'14), pages 15-21, 2014. URL: https://doi.org/10.1145/2677068.2677069.
  14. Alaul Islam, Tingying He, Anastasia Bezerianos, Bongshin Lee, Tanja Blascheck, and Petra Isenberg. Visualizing information on smartwatch faces: A review and design space. CoRR, abs/2310.16185, 2023. URL: https://doi.org/10.48550/arXiv.2310.16185.
  15. Benjamin Niedermann and Jan-Henrik Haunert. Focus+context map labeling with optimized clutter reduction. International Journal of Cartography, 5(2-3):158-177, 2019. URL: https://doi.org/10.1080/23729333.2019.1613072.
  16. Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding labels. Computational Geometry: Theory and Applications, 13(1):21-47, 1999. URL: https://doi.org/10.1016/S0925-7721(99)00005-X.
  17. Alexander Wolff. Graph drawing and cartography. In Roberto Tamassia, editor, Handbook on Graph Drawing and Visualization, pages 697-736. Chapman and Hall/CRC, 2013. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail