Upward Pointset Embeddings of Planar st-Graphs

Authors Carlos Alegría , Susanna Caroppo , Giordano Da Lozzo , Marco D'Elia , Giuseppe Di Battista , Fabrizio Frati , Fabrizio Grosso , Maurizio Patrignani



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.24.pdf
  • Filesize: 1.23 MB
  • 18 pages

Document Identifiers

Author Details

Carlos Alegría
  • Roma Tre University, Rome, Italy
Susanna Caroppo
  • Roma Tre University, Rome, Italy
Giordano Da Lozzo
  • Roma Tre University, Rome, Italy
Marco D'Elia
  • Roma Tre University, Rome, Italy
Giuseppe Di Battista
  • Roma Tre University, Rome, Italy
Fabrizio Frati
  • Roma Tre University, Rome, Italy
Fabrizio Grosso
  • Roma Tre University, Rome, Italy
Maurizio Patrignani
  • Roma Tre University, Rome, Italy

Cite AsGet BibTex

Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Upward Pointset Embeddings of Planar st-Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.24

Abstract

We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and let S ⊂ ℝ² be a pointset with |S| = |V(G)|. An UPSE of G on S is an upward planar straight-line drawing of G that maps the vertices of G to the points of S. We consider both the problem of testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in 𝒪(n^{4k}) time with 𝒪(n^{3k}) space, and to enumerate all UPSEs of G on S with 𝒪(n) worst-case delay, using 𝒪(k n^{4k} log n) space, after 𝒪(k n^{4k} log n) set-up time. Moreover, for an n-vertex st-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in 𝒪(n log n) time. Related to this result, we give an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian cycles on S with 𝒪(n) worst-case delay, using 𝒪(n²) space, after 𝒪(n²) set-up time.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational geometry
  • Theory of computation → Design and analysis of algorithms
  • Mathematics of computing → Graph algorithms
Keywords
  • Upward pointset embeddings
  • planar st-graphs
  • st-cutset
  • non-crossing monotone Hamiltonian cycles
  • graph drawing enumeration

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Carlos Alegria, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Upward pointset embeddings of planar st-graphs. CoRR, abs/2408.17369, 2024. URL: https://arxiv.org/abs/2408.17369.
  2. Victor Alvarez, Karl Bringmann, Radu Curticapean, and Saurabh Ray. Counting triangulations and other crossing-free structures via onion layers. Discret. Comput. Geom., 53(4):675-690, 2015. URL: https://doi.org/10.1007/S00454-015-9672-3.
  3. Patrizio Angelini, Fabrizio Frati, Markus Geyer, Michael Kaufmann, Tamara Mchedlidze, and Antonios Symvonis. Upward geometric graph embeddings into point sets. In Ulrik Brandes and Sabine Cornelsen, editors, 18th International Symposium on Graph Drawing (GD 2010), volume 6502 of LNCS, pages 25-37. Springer, 2010. URL: https://doi.org/10.1007/978-3-642-18469-7_3.
  4. Elena Arseneva, Pilar Cano, Linda Kleist, Tamara Mchedlidze, Saeed Mehrabi, Irene Parada, and Pavel Valtr. Upward point set embeddings of paths and trees. In Ryuhei Uehara, Seok-Hee Hong, and Subhas C. Nandy, editors, 15th International Conference and Workshops on Algorithms and Computation (WALCOM 2021), volume 12635 of LNCS, pages 234-246. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-68211-8_19.
  5. Therese Biedl and Martin Vatshelle. The point-set embeddability problem for plane graphs. In Tamal K. Dey and Sue Whitesides, editors, 28th ACM Symposium on Computational Geometry (SoCG 2012), pages 41-50. ACM, 2012. URL: https://doi.org/10.1145/2261250.2261257.
  6. Carla Binucci, Emilio Di Giacomo, Walter Didimo, Alejandro Estrella-Balderrama, Fabrizio Frati, Stephen G. Kobourov, and Giuseppe Liotta. Upward straight-line embeddings of directed graphs into point sets. Comput. Geom., 43(2):219-232, 2010. URL: https://doi.org/10.1016/J.COMGEO.2009.07.002.
  7. Prosenjit Bose. On embedding an outer-planar graph in a point set. In Giuseppe Di Battista, editor, 5th International Symposium on Graph Drawing (GD '97), volume 1353 of LNCS, pages 25-36. Springer, 1997. URL: https://doi.org/10.1007/3-540-63938-1_47.
  8. Prosenjit Bose. On embedding an outer-planar graph in a point set. Comput. Geom., 23(3):303-312, 2002. URL: https://doi.org/10.1016/S0925-7721(01)00069-4.
  9. Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algorithms to embed trees in a point set. In Franz-Josef Brandenburg, editor, Symposium on Graph Drawing (GD '95), volume 1027 of LNCS, pages 64-75. Springer, 1995. URL: https://doi.org/10.1007/BFB0021791.
  10. Prosenjit Bose, Michael McAllister, and Jack Snoeyink. Optimal algorithms to embed trees in a point set. J. Graph Algorithms Appl., 1(2):1-15, 1997. URL: https://doi.org/10.7155/JGAA.00002.
  11. Sergio Cabello. Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl., 10(2):353-363, 2006. URL: https://doi.org/10.7155/JGAA.00132.
  12. Netzahualcoyotl Castañeda and Jorge Urrutia. Straight line embeddings of planar graphs on point sets. In Frank Fiala, Evangelos Kranakis, and Jörg-Rüdiger Sack, editors, 8th Canadian Conference on Computational Geometry (CCCG 1996), pages 312-318. Carleton University Press, 1996. URL: http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf.
  13. Gi-Sang Cheon, Hong Joon Choi, Guillermo Esteban, and Minho Song. Enumeration of bipartite non-crossing geometric graphs. Discret. Appl. Math., 317:86-100, 2022. URL: https://doi.org/10.1016/J.DAM.2022.04.008.
  14. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, 4th Edition. MIT Press, 2022. URL: https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/.
  15. Giuseppe Di Battista, Walter Didimo, Luca Grilli, Fabrizio Grosso, Giacomo Ortali, Maurizio Patrignani, and Alessandra Tappini. Small point-sets supporting graph stories. In Patrizio Angelini and Reinhard von Hanxleden, editors, 30th International Symposium on Graph Drawing and Network Visualization (GD 2022), volume 13764 of LNCS, pages 289-303. Springer, 2022. URL: https://doi.org/10.1007/978-3-031-22203-0_21.
  16. Giuseppe Di Battista, Walter Didimo, Luca Grilli, Fabrizio Grosso, Giacomo Ortali, Maurizio Patrignani, and Alessandra Tappini. Small point-sets supporting graph stories. J. Graph Algorithms Appl., 27(8):651-677, 2023. URL: https://doi.org/10.7155/JGAA.00639.
  17. Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, 1999. Google Scholar
  18. Giuseppe Di Battista and Roberto Tamassia. Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci., 61:175-198, 1988. URL: https://doi.org/10.1016/0304-3975(88)90123-5.
  19. Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012. Google Scholar
  20. David Eppstein. Counting polygon triangulations is hard. Discret. Comput. Geom., 64(4):1210-1234, 2020. URL: https://doi.org/10.1007/S00454-020-00251-7.
  21. David Eppstein. Non-crossing hamiltonian paths and cycles in output-polynomial time. In Erin W. Chambers and Joachim Gudmundsson, editors, 39th International Symposium on Computational Geometry (SoCG 2023), volume 258 of LIPIcs, pages 29:1-29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPICS.SOCG.2023.29.
  22. Philippe Flajolet and Marc Noy. Analytic combinatorics of non-crossing configurations. Discret. Math., 204(1-3):203-229, 1999. URL: https://doi.org/10.1016/S0012-365X(98)00372-0.
  23. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, first edition edition, 1979. Google Scholar
  24. Emilio Di Giacomo, Henry Förster, Daria Kokhovich, Tamara Mchedlidze, Fabrizio Montecchiani, Antonios Symvonis, and Anaïs Villedieu. On 1-bend upward point-set embeddings of st-digraphs. In José A. Soto and Andreas Wiese, editors, 16th Latin American Symposium on Theoretical Informatics (LATIN 2024), Part I, volume 14578 of LNCS, pages 3-18. Springer, 2024. URL: https://doi.org/10.1007/978-3-031-55598-5_1.
  25. Francesco Giordano, Giuseppe Liotta, Tamara Mchedlidze, Antonios Symvonis, and Sue Whitesides. Computing upward topological book embeddings of upward planar digraphs. J. Discrete Algorithms, 30:45-69, 2015. URL: https://doi.org/10.1016/J.JDA.2014.11.006.
  26. Peter Gritzmann, Bojan Mohar, János Pach, and Richard Pollack. Embedding a planar triangulation with vertices at specified points. The American Mathematical Monthly, 98(2):165, 1991. URL: https://doi.org/10.2307/2323956.
  27. Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and queue layouts of directed acyclic graphs: Part I. SIAM J. Comput., 28(4):1510-1539, 1999. URL: https://doi.org/10.1137/S0097539795280287.
  28. Michael Kaufmann, Tamara Mchedlidze, and Antonios Symvonis. Upward point set embeddability for convex point sets is in P. In Marc J. van Kreveld and Bettina Speckmann, editors, 19th International Symposium on Graph Drawing (GD 2011), volume 7034 of LNCS, pages 403-414. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-25878-7_38.
  29. Michael Kaufmann, Tamara Mchedlidze, and Antonios Symvonis. On upward point set embeddability. Comput. Geom., 46(6):774-804, 2013. URL: https://doi.org/10.1016/J.COMGEO.2012.11.008.
  30. Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends suffice for planar graphs. In Jan Kratochvíl, editor, 7th International Symposium on Graph Drawing (GD'99), volume 1731 of LNCS, pages 165-174. Springer, 1999. URL: https://doi.org/10.1007/3-540-46648-7_17.
  31. Michael Kaufmann and Roland Wiese. Embedding vertices at points: Few bends suffice for planar graphs. J. Graph Algorithms Appl., 6(1):115-129, 2002. URL: https://doi.org/10.7155/JGAA.00046.
  32. Dániel Marx and Tillmann Miltzow. Peeling and nibbling the cactus: Subexponential-time algorithms for counting triangulations and related problems. In Sándor P. Fekete and Anna Lubiw, editors, 32nd International Symposium on Computational Geometry (SoCG 2016), volume 51 of LIPIcs, pages 52:1-52:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPICS.SOCG.2016.52.
  33. Tamara Mchedlidze. Upward planar embedding of an n-vertex oriented path on O(n^2) points. Comput. Geom., 46(8):1003-1008, 2013. URL: https://doi.org/10.1016/J.COMGEO.2013.05.004.
  34. Joseph S. B. Mitchell and Joseph O'Rourke. Computational geometry column 42. Int. J. Comput. Geom. Appl., 11(5):573-582, 2001. URL: https://doi.org/10.1142/S0218195901000651.
  35. Rahnuma Islam Nishat, Debajyoti Mondal, and Md. Saidur Rahman. Point-set embeddings of plane 3-trees. Comput. Geom., 45(3):88-98, 2012. URL: https://doi.org/10.1016/J.COMGEO.2011.09.002.
  36. Andreas Razen and Emo Welzl. Counting plane graphs with exponential speed-up. In Cristian S. Calude, Grzegorz Rozenberg, and Arto Salomaa, editors, Rainbow of Computer Science - Dedicated to Hermann Maurer on the Occasion of His 70th Birthday, volume 6570 of LNCS, pages 36-46. Springer, 2011. URL: https://doi.org/10.1007/978-3-642-19391-0_3.
  37. Manuel Wettstein. Counting and enumerating crossing-free geometric graphs. J. Comput. Geom., 8(1):47-77, 2017. URL: https://doi.org/10.20382/JOCG.V8I1A4.
  38. Katsuhisa Yamanaka, David Avis, Takashi Horiyama, Yoshio Okamoto, Ryuhei Uehara, and Tanami Yamauchi. Algorithmic enumeration of surrounding polygons. Discret. Appl. Math., 303:305-313, 2021. URL: https://doi.org/10.1016/J.DAM.2020.03.034.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail