,
Susanna Caroppo
,
Giordano Da Lozzo
,
Marco D'Elia
,
Giuseppe Di Battista
,
Fabrizio Frati
,
Fabrizio Grosso
,
Maurizio Patrignani
Creative Commons Attribution 4.0 International license
We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and let S ⊂ ℝ² be a pointset with |S| = |V(G)|. An UPSE of G on S is an upward planar straight-line drawing of G that maps the vertices of G to the points of S. We consider both the problem of testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in 𝒪(n^{4k}) time with 𝒪(n^{3k}) space, and to enumerate all UPSEs of G on S with 𝒪(n) worst-case delay, using 𝒪(k n^{4k} log n) space, after 𝒪(k n^{4k} log n) set-up time. Moreover, for an n-vertex st-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in 𝒪(n log n) time. Related to this result, we give an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian cycles on S with 𝒪(n) worst-case delay, using 𝒪(n²) space, after 𝒪(n²) set-up time.
@InProceedings{alegria_et_al:LIPIcs.GD.2024.24,
author = {Alegr{\'\i}a, Carlos and Caroppo, Susanna and Da Lozzo, Giordano and D'Elia, Marco and Di Battista, Giuseppe and Frati, Fabrizio and Grosso, Fabrizio and Patrignani, Maurizio},
title = {{Upward Pointset Embeddings of Planar st-Graphs}},
booktitle = {32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
pages = {24:1--24:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-343-0},
ISSN = {1868-8969},
year = {2024},
volume = {320},
editor = {Felsner, Stefan and Klein, Karsten},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.24},
URN = {urn:nbn:de:0030-drops-213082},
doi = {10.4230/LIPIcs.GD.2024.24},
annote = {Keywords: Upward pointset embeddings, planar st-graphs, st-cutset, non-crossing monotone Hamiltonian cycles, graph drawing enumeration}
}