LIPIcs.GD.2024.25.pdf
- Filesize: 0.89 MB
- 16 pages
Beyond-planar graph classes are usually defined via forbidden configurations or patterns in a drawing. In this paper, we formalize these concepts on a combinatorial level and show that, for any fixed family ℱ of crossing patterns, deciding whether a given graph G admits a drawing that avoids all patterns in F and that has at most c crossings is FPT w.r.t. c. In particular, we show that for any fixed k, deciding whether a graph is k-planar, k-quasi-planar, fan-crossing, fan-crossing-free or min-k-planar, respectively, is FPT with respect to the corresponding beyond-planar crossing number.
Feedback for Dagstuhl Publishing