On the Edge Density of Bipartite 3-Planar and Bipartite Gap-Planar Graphs

Authors Aaron Büngener, Maximilian Pfister



PDF
Thumbnail PDF

File

LIPIcs.GD.2024.28.pdf
  • Filesize: 1.25 MB
  • 21 pages

Document Identifiers

Author Details

Aaron Büngener
  • Universität Tübingen, Germany
Maximilian Pfister
  • Universität Tübingen, Germany

Acknowledgements

We thank the anonymous reviewers for their valuable feedback.

Cite AsGet BibTex

Aaron Büngener and Maximilian Pfister. On the Edge Density of Bipartite 3-Planar and Bipartite Gap-Planar Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 28:1-28:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
https://doi.org/10.4230/LIPIcs.GD.2024.28

Abstract

We show that if a bipartite graph G with n ≥ 3 vertices can be drawn in the plane such that (i) each edge is involved in at most three crossings per edge or (ii) each crossing is assigned to one of the two involved edges and each edge is assigned at most one crossing, then G has at most 4n-8 edges. In both cases, this bound is tight up to an additive constant as witnessed by lower-bound constructions. The former result can be used to improve the leading constant for the crossing lemma for bipartite graphs which in turn improves various results such as the biplanar crossing number or the maximum number of edges a bipartite k-planar graph can have.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Combinatorics
  • Mathematics of computing → Graph theory
Keywords
  • Edge Density
  • Beyond Planarity
  • bipartite Graphs
  • Discharging Method

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eyal Ackerman. On topological graphs with at most four crossings per edge. Comput. Geom., 85:101574, 2019. URL: https://doi.org/10.1016/j.comgeo.2019.101574.
  2. Eyal Ackerman and Gábor Tardos. On the maximum number of edges in quasi-planar graphs. J. Comb. Theory A, 114(3):563-571, 2007. URL: https://doi.org/10.1016/j.jcta.2006.08.002.
  3. Patrizio Angelini, Michael A. Bekos, Michael Kaufmann, Maximilian Pfister, and Torsten Ueckerdt. Beyond-planarity: Turán-type results for non-planar bipartite graphs. In ISAAC, volume 123 of LIPIcs, pages 28:1-28:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2018.28.
  4. K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging. Illinois Journal of Mathematics, 21(3):429-490, 1977. URL: https://doi.org/10.1215/ijm/1256049011.
  5. Sang Won Bae, Jean-François Baffier, Jinhee Chun, Peter Eades, Kord Eickmeyer, Luca Grilli, Seok-Hee Hong, Matias Korman, Fabrizio Montecchiani, Ignaz Rutter, and Csaba D. Tóth. Gap-planar graphs. Theor. Comput. Sci., 745:36-52, 2018. URL: https://doi.org/10.1016/j.tcs.2018.05.029.
  6. Steven Chaplick, Myroslav Kryven, Giuseppe Liotta, Andre Löffler, and Alexander Wolff. Beyond outerplanarity. In GD, volume 10692 of Lecture Notes in Computer Science, pages 546-559. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-73915-1_42.
  7. Otfried Cheong, Sariel Har-Peled, Heuna Kim, and Hyo-Sil Kim. On the number of edges of fan-crossing free graphs. Algorithmica, 73(4):673-695, December 2015. URL: https://doi.org/10.1007/s00453-014-9935-z.
  8. Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing beyond planarity. ACM Comput. Surv., 52(1), February 2019. URL: https://doi.org/10.1145/3301281.
  9. Weidong Huang, Peter Eades, and Seok-Hee Hong. Larger crossing angles make graphs easier to read. J. Vis. Lang. Comput., 25(4):452-465, 2014. URL: https://doi.org/10.1016/j.jvlc.2014.03.001.
  10. Dmitri V Karpov. An upper bound on the number of edges in an almost planar bipartite graph. Journal of Mathematical Sciences, 196:737-746, 2014. Google Scholar
  11. Michael Kaufmann and Torsten Ueckerdt. The density of fan-planar graphs. Electron. J. Comb., 29(1):P1-29, 2022. URL: https://doi.org/10.37236/10521.
  12. Petra Mutzel. An alternative method to crossing minimization on hierarchical graphs. In Stephen C. North, editor, Graph Drawing, Symposium on Graph Drawing, GD '96, Berkeley, California, USA, September 18-20, Proceedings, volume 1190 of Lecture Notes in Computer Science, pages 318-333, Berlin, Heidelberg, 1996. Springer. URL: https://doi.org/10.1007/3-540-62495-3_57.
  13. János Pach, Rados Radoicic, Gábor Tardos, and Géza Tóth. Improving the crossing lemma by finding more crossings in sparse graphs. Discret. Comput. Geom., 36(4):527-552, 2006. URL: https://doi.org/10.1007/s00454-006-1264-9.
  14. János Pach and Géza Tóth. Graphs drawn with few crossings per edge. Combinatorica, 17(3):427-439, 1997. URL: https://doi.org/10.1007/BF01215922.
  15. Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb., 29:107-117, 1965. Google Scholar
  16. Thomas Schneck. New Parameters for Beyond-Planar Graphs. dissertation, University Tübingen, 2020. URL: https://publikationen.uni-tuebingen.de/xmlui/handle/10900/109680.
  17. Alireza Shavali and Hamid Zarrabi-Zadeh. On the biplanar and k-planar crossing numbers. In CCCG, pages 293-297, 2022. Google Scholar
  18. Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. Cognitive measurements of graph aesthetics. Information Visualization, 1:103-110, June 2002. URL: https://doi.org/10.1057/palgrave.ivs.9500013.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail